UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

BRINE CONTAMINATION OF FRESHWATER AQUIFERS AND STREAMS IN PETROLEUM PRODUCING AREAS IN MISSISSIPPI

by

Stephen J. Kalkhoff Hydrologist U.S. Geological Survey

U.S. Geological Survey Water-Resources Investigations Report 85-4117

Prepared in cooperation with the

Mississippi Department of Natural Resources Bureau of Pollution Control

Jackson, Mississippi

1986

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

U.S. Geological Survey Water Resources Division Suite 710, Federal Building 100 W. Capitol Street Jackson, Mississippi 39269 Telephone: (601) 965-4600 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225 Telephone: (303) 236-7476

CONTENTS

	F
Abstract	
Introduction	
Objectives and scope	
Previous studies	
Location	
Topography	
Geology and hydrology	
Determination of brine contamination	
Freshwater quality	
Brine-water quality	
Geochemical reactions	
Definition of contamination	
Study area 1	
Subarea A (Pickens)	
Subarea B (Tinsley)	
Summary and conclusions	
Study area 2	
Homochitto drainage basin	
Subarea A (Natchez)	
Subarea B (Second Creek)	
Subarea C (Kingston)	
Subarea D (Southeastern Adams County)	
Subarea E (Knoxville)	
Subarea F (Cannonsburg)	
Summary and conclusions	
Study area 3	
Bogue Chitto drainage basin	
Subarea A (Brookhaven)	
Subarea B (McComb-Mars Hill)	
Subarea C (Little Creek)	
Summary and conclusions	
Study area 4	
Subarea A (Baxterville)	
Subarea B (Pistol Ridge)	
Summary and conclusions	
Study area 5	
Leaf River drainage basin	
Chickasawhay River drainage basin	
Subareas A (Yellow Creek) and B (Terrell Creek)	
Summary and conclusions	
Suggestions for additional study	
Selected references	
Hydrologic data	

ILLUSTRATIONS

Figures	1-6	• Maps showing:
- - 3		General location of the five study areas and the
		outcrops of the major formations in southern
		Mississippi
	2.	Location of study area 1 showing subarea A (Pickens)
		and subarea B (Tinsley)
	3.	Chloride concentrations at ground-water and
		surface-water sites in subarea A (Pickens), 1982
	4.	Chloride concentrations at ground-water and
		surface-water sites in subarea B (Pickens), 1982
	5.	Location of study area 2 showing subareas A
		(Natchez), B (Second Creek), C (Kingston),
		D (southeastern Adams County), E (Knoxville),
		and F (Cannonsburg)
	6.	Chloride concentrations during low flow at
		surface-water sites in the Homochitto drainage
		basin, July and August 1982
Figures		• Graphs showing:
	7.	Specific conductance versus chloride concentration
		in the Homochitto River at Rosetta (07292500),
	_	1958-83
	8.	Calculated chloride concentrations and mean-daily
		discharge in the Homochitto River at Rosetta
	^	(07292500), 1975, 1976, and 1978 water years
	9.	Calculated chloride concentrations and mean-daily
		discharge in the Homochitto River at Rosetta
Figures	10	(07292500), 1979-81 water years24. Maps showing:
		Chloride concentrations at ground-water and
	10.	surface-water sites in subarea A, 1981-82
	11	Chloride concentrations at ground-water and
	11.	surface-water sites in subarea B, 1981-82
	12.	
	12.	in subarea C, 1963
	13.	
	17.	surface-water sites in subarea D, 1981-82
	14.	Chloride concentrations at ground-water and
	_ ¬¬•	surface-water sites in subarea E, 1981-82
	15.	Chloride concentrations at ground-water and
	•	surface-water sites in subarea F, 1981-82
	16.	Location of study area 3 showing subareas A
		(Brookhaven), B (McComb-Mars Hill), and
		C (Little Creek)
	17.	
		surface-water sites in the Bogue Chitto
		drainage basin, July 1982
	18.	Chloride concentrations at ground-water and
	-	surface-water sites in subarea A, 1981-82

			Page
	19.		
	20.		45
	21.	surface-water sites in subarea C, 1981-82 Location of study area 4 showing subareas A	46
		(Baxterville) and B (Pistol Ridge)	48
	22.	Chloride concentrations at ground-water and surface-water sites in subarea A, 1981-82	50
	23.	•	51
	24.	Location of study area 5 showing subarea A (Leaf River drainage basin), B (Terrell Creek), C (Chickasawhay River drainage basin, and D	54
	25.	(East Yellow Creek) Chloride concentrations at ground-water and surface-water sites in subarea A, 1981-82	55
	26.	Chloride concentrations at ground-water and	
Figure	c 27	surface-water sites in subarea C, 1982	57
Figure			
	27.	Specific conductance versus chloride concentrations in the Chickasawhay River near Waynesboro (02477500), 1963-64	59
	28.		60
	29.		00
		surface-water sites in subarea B, 1981-82	64
	30.	Chloride concentrations at ground-water sites in subarea D, 1981-82	64
		TANK SO	
		TABLES	
Table	1.	Location, size, and major oil and gas fields in the study areas	4
	2.	Geologic units and their lithology and hydrologic	0
	3.	significance	8
		fields in the study areas	11
	4.	Location and drainage area of surface-water sites in study area l	19
	5.	Records of wells in area 1	19
	6.	Chemical analyses of surface water in area 1	20

7.	
8.	Location and drainage area of surface-water sites in area 2
9.	
10.	
11.	· · · · · · · · · · · · · · · · · · ·
	Location and drainage area of surface-water sampling sites in area 3
13.	
14.	
15.	
16.	
10.	sites in area 4
17.	Records of wells in area 4
18.	Chemical analyses of surface water in area 4
19.	Chemical analyses of ground water in area 4
20.	
21.	Records of wells in area 5
22.	
23.	

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) UNITS

Factors for converting inch-pound units to metric units are shown below to four significant figures. In the text, metric equivalents are shown only to the number of significant figures consistent with the accuracy of analytical determinations or measurement.

<u>Multiply</u>	Ву	<u>To obtain</u>
foot (ft)	0.3048	meter (m)
mile (mi) square mile (mi ²)	1.609 2.590	kilometer (km) square kilometer (km ²)
<pre>cubic foot per second (ft³/s)</pre>	0.02832	cubic meter per second (m³/s)
micromho per centimeter at 25° Celsius		microsiemen per centimeter at 25° Celsius
(umho/cm at 25°C)	1.000	(µS/cm at 25°C)

<u>Abbreviations</u>

milligrams per liter (mg/L) micrograms per liter (μ g/L) micromhos (μ mhos)

Throughout this report water temperatures are reported in degrees Celsius ($^{\circ}$ C). Temperatures may be converted to degrees Fahrenheit ($^{\circ}$ F) equivalent with the following formula:

 $^{\circ}F = 1.8^{\circ}C + 32$

BRINE CONTAMINATION OF FRESHWATER AQUIFERS AND STREAMS IN PETROLEUM PRODUCING AREAS IN MISSISSIPPI

By Stephen J. Kalkhoff

ABSTRACT

A ground- and surface-water quality study was conducted in 1981 and 1982 to identify brine-contaminated streams and shallow aquifers in five major oil- and gas-producing areas in southern Mississippi. The study encompasses a total area of about 5,200 square miles in 17 counties.

Water samples were collected from wells at depths of less than 300 feet and from streams at low flow during two field reconnaissances of the areas. The background concentrations of selected chemical constituents of uncontaminated native water and the location of apparent brine contamination were determined from analysis of the water samples plus data from published and unpublished reports.

A chloride concentration greater than 50 milligrams per liter is the primary criterion used to determine brine contamination. Bromide and strontium concentrations, specific conductance, pH, and calculated sodium to chloride ratios are supplementary data used to substantiate petroleum brines as the contamination source of freshwaters.

Brine contamination was found in shallow aquifers (less than 300 feet) and in streams in parts of all five study areas. Contamination was prevalent in the Brookhaven, Baxterville, Pistol Ridge, Little Creek, Tinsley oil fields. Numerous areas of contamination were also found in Adams County. Data also indicate that deeper aquifers were contaminated in the Brookhaven and Tinsley oil fields. As a result of the study, five sites for additional detailed geohydrologic studies were identified to determine the extent and movement of contaminants in order to plan for present and future protection of water samples.

INTRODUCTION

Oil and gas occur at depths greater than 2,000 ft in most of the geologic units in Mississippi. Since the first successful oil well was drilled in Yazoo County in 1939, thousands of wells have been drilled and the producing areas have expanded into many parts of the State.

Petroleum production is accompanied by the production of brine. Usually, newly completed wells have a lower saltwater to oil ratio than wells which have been pumping a number of years. This ratio may vary from almost no saltwater to more than 20 barrels of saltwater per barrel of oil (Mississippi State Oil and Gas Board, 1981).

The most common suggested method of saltwater disposal in the past was by "evaporation pits", which in most cases, actually discharged water to underlying unconfined aquifers or nearby streams. Although this practice is now prohibited, thousands of pits were constructed and their impact on the hydrologic system is largely unknown. Brine is now reinjected into an aquifer with water having a dissolved solids concentration of 10,000 mg/L or greater. However, saltwater contamination of freshwater aquifers is still possible from improperly constructed or leaking injection wells.

In order to determine the extent of brine contamination in oil-producing areas of Mississippi, a data-collection program was undertaken by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Pollution Control. Historical data collected by State agencies and the U.S. Geological Survey and data collected during the study were used to define and map areas of brine contamination. Finally, suggestions were made to further study the geohydrology in several areas where brine contamination poses a threat to the water supply.

The writer acknowledges the cooperation of well owners who allowed sampling of their wells and who provided information on potential sources of contamination. A special thanks is extended to the people offering suggestions in the writing of this report and to those who reviewed it.

Objectives and Scope

The main objectives of the study are: (1) determine background chemical quality of shallow aquifers and streams in southern Mississippi; (2) determine and delineate specific areas of oil-field brine contamination; and (3) outline needs for more detailed site studies.

Background or "natural" water quality that represents water in uncontaminated shallow aquifers and streams in southern Mississippi was determined by using a combination of previously published data from the U.S. Geological Survey WATSTORE file and data obtained during the study. The data were compiled and analyzed to determine background levels of selected major ion concentrations. Samples used to determine the levels of dissolved ion concentrations during the study were collected from several wells and surface-water low-flow sites in areas of no known oil production or brine contamination.

Areas of possible contamination were determined by reviewing reports published by the Mississippi Department of Natural Resources, Bureau of Geology; U.S. Geological Survey Open-File Reports; and unpublished reports documenting the presence of oil-field brine contamination.

Water samples were collected in five study areas encompassing a total of approximately 5,200 mi² (table 1). Each study area was divided into two or more subareas of related data. Data were collected in two phases — the reconnaissance phase and documentation phase. In 1980 and 1981 during the reconnaissance phase, 190 stream sites were visited during periods of low streamflow. Samples were collected for chloride analysis if the specific conductance of the water was greater than 100 μ S/cm (microsiemens per centimeter). Specific conductance and chloride concentrations were determined at all 224 well sites visited during the reconnaissance phase (Kalkhoff, 1982).

Table 1.--Location, size, and major oil and gas fields in the study areas

Study Area	County	Oil and Gas Fields Included	Area (mi ²)
1	Yazoo, Madison	Pickens, Tinsley	250
2	Adams, Jefferson Franklin, Amite	Numerous	1,800
3	Lincoln, Pike, Amite	McComb, Smithdale Brookhaven, Little Creek, Mallalieu	470
4	Marion, Lamar Forrest Pearl River	Baxterville Pistol Ridge	700
5	Clarke, Wayne Jones, Jasper	Numerous	2,000
		Total	5,200

During the documentation phase in the summer of 1982, a total of 92 ground-water sites and 65 surface-water sites were sampled. Sites were sampled if they had been reported contaminated or found to have chloride concentrations greater than 20 mg/L during the reconnaissance phase. In addition, several sites where chloride concentrations were less than 20 mg/L were resampled to determine background concentrations of selected major ions. Temperature, pH, and specific conductance of water were measured at all sites at the time of sample collection. Additionally, dissolved-oxygen concentrations and stream discharge were measured at each surface-water site. The water samples were analyzed by the U.S. Geological Survey National Water Quality Laboratory in Atlanta, Ga., for Calcium (Ca), magnesium (Mg), sodium (Na), chloride (Cl), and sulfate (SO₄). Selected samples were also analyzed for boron (B), bromide (Br), and strontium (Sr).

Needs for detailed site studies are based on size of the area and extent of contamination as determined by interpretation and analysis of data collected during this study and the number of residents in the proximity of the contaminated area.

Previous Studies

The sparse data previously published concerning the effects of oilfield brines in Mississippi are primarily for surface waters. Callahan and others (1964, p. 21) reported that oil-field wastes probably were responsible for the chemical pollution of Coles Creek and South Fork Coles Creek in Jefferson County and St. Catherine Creek and its tributaries, Melvin Bayou and Kittering Creek, in Adams County. indicate the presence of contamination in the Homochitto River near Doloroso and its tributary, Second Creek. Childress and others (1976, table 10) have shown that numerous other streams in Adams County contained chloride concentrations in excess of 250 mg/L during both high and low-flow periods. Of 10 streams sampled by Shows and others (1966, p. 18-23), 6 indicate oil-field brine pollution at times. These sites were Tallahala Creek, Leaf River downstream of Hattiesburg in Forrest County, and Chickasawhay River downstream of Waynesboro in Wayne County. According to Baughman and McCarty (1974, p. 279-286), Eucutta Creek, Yellow Creek, and Hortons Mill Creek, tributaries of the Chickasawhay River in Wayne County, were polluted by oil-field brines and contained chloride concentrations greater than 250 mg/L when sampled.

Although most published data pertains to surface-water sites, Callahan and others (1964, p.5) reported possible brine contamination of ground water on the basis of highly mineralized water obtained from a well in Jefferson County.

Location

Five of the most active petroleum producing areas in southern and central Mississippi were selected for study (fig. 1). Counties in which the study areas are located, the oil fields encompassed by each study area, and the square miles within each study area are listed in table 1.

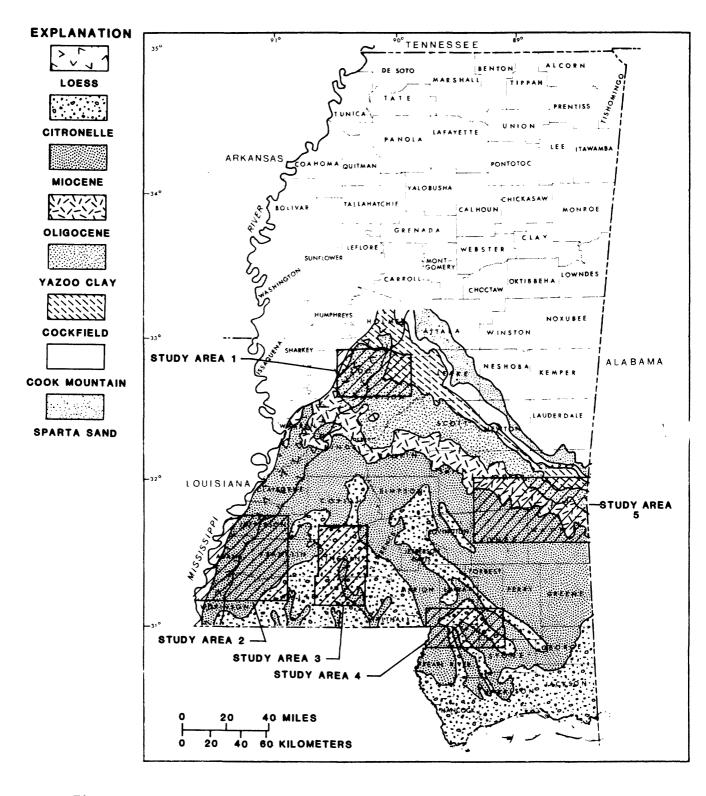


Figure 1.--General location of the five study areas and the outcrops of the major formations in southern Mississippi.

All sampling sites are located within a study area in the vicinity of oil fields and sites to determine background water quality are generally within 10 miles of an oil field.

Topography

Study areas 3 and 4 lie entirely within the Long Leaf Pine physiographic district. The eastern half of study area 2 and a large part of study area 5 also are in the district. Cross and Wales (1974, p. 7) characterize the general surface configuration of the Long Leaf Pine physiographic district as being high and rolling, with moderately high ridges forming divides between streams. Relief in excess of 100 feet between hilltops and stream bottoms is not uncommon. A large part of the study areas in the district is wooded, but land with moderate relief has been cleared and is used for agricultural purposes.

The western parts of study areas 1 and 2 are in both the Mississippi Alluvial Plain and the Loess Hills physiographic district. The topography of the Mississippi Alluvial Plain and Loess Hills physiographic district is developed on two units of the Quaternary System, loess, and the Mississippi River Valley Alluvium. Erosion of older Tertiary deposits by the Mississippi River and subsequent deposition of alluvial material in the valley formed an extremely flat land surface in the western section of study areas 1 and 2. Immediately to the east of this flat valley, wind-blown loess was deposited on upland Tertiary deposits and eroded to form narrow ridges and steep valleys. Most of the alluvial plain is used for agriculture and some lower areas are marshy and The rugged terrain of the Loess Hills, for the most part, preclude agricultural use, thus the district has remained heavily As the loess deposits thin eastward, the topographic relief lessens. With more moderate relief, increased agricultural use is made of the land.

A small part of study area 5 lies within the Jackson Prairie district. Cross and Wales (1974, p. 7) describe the topography of the Jackson Prairie as flat to undulating areas of little or moderate topographic relief and ia primarily used for agriculture.

Geology and Hydrology

The Sparta Sand, the Cockfield Formation, the rocks of the Oligocene Series, the rocks of the Miocene Series, the Citronelle Formation, and the Mississippi River Valley Alluvium function as the principal aquifers in the study areas. That is, these units contain sufficient saturated permeable material to yield significant quantities of water to wells. Recharge to aquifers is generally from precipitation on the outcrop area (fig. 1). However, hydrologic connection allows the Miocene aquifer system to be recharged from overlying Citronelle deposits. Water generally moves downdip in all aquifers to the south and southwest and toward areas of heavy pumping. However, in the outcrop area, some water moves laterally towards valley walls to be discharged by springs and seeps. The lithology and hydrologic significance of the major geologic units in the study areas are listed in table 2.

Table 2.--Geologic units and their lithology and hydrologic significance

System	Series	Group	UnIt	Lithology	Hydrologic Significance*
Quater- nary	Holocene		Alluvium and Terrace Deposits	Clay, sand and gravel	Source of large quantities of water for industrial and agri- cultural uses in area 2. Source of some small domestic water supplies in other areas.
	PleIstocene		Loess	Fine wind blown alluvial material	Not an equifer, but may influ- ence the water quality of un- derlying aquifers in areas l and 2.
Terti- ary	PIIocene		Citronelle Formation	Quartz sand, chert gravel and lenses and layers of clay	Very permeable, readily received ing and transmitting water from precipitation. Major source of water for domestic wells in study area 3 and 4. Provides high base flow to streams and some recharge to underlying Miocene aquifers.
	Miocene		Hattlesburg Formation and Catahoula Sandstone (Undifferentiated)	Series of irregular and locally lenticular sand and clay beds	Primary source of water for municipal and rural water supply systems in study areas 2-5 Shallower miocene aquifers are an important source for domestic wells in these areas. Provides generally poor yield to streams.
	Oligocene	Vicksburg	Byram Formation Marianna Limestone	Discontinuous interbedded maris, Limestones, and sands	Used as a source of water for domestic water supplies in northern half of study area 5. Provides poor to fair yields to streams.
			Forest HIII Sand	Clay, silt and irregular sand beds	Used primarily for domestic water supplies in the outcrop area and several miles downdip Provides poor yields to streams.
	Eocene	Jackson	Yazoo Clay	Clay, with a few irregular sand beds.	Not an aquifer.
	***************************************	Claiborne	e Cockfield Formation	Sand, sandy clay, and clay, the sand occurs as irregular lenses and beds.	Important source of domestic and rural water supplies in areas 1 and 5. Provides poor yields to streams.
			Cook Mountain	Sand, clay, marl.	Small yields to small wells. Poor yields to streams.
		***************************************	Sparta Sand	Commonly consists of two or more sand beds separated by clay.	Source of domestic and rural water supplies in area 1. Provides poor to fair yields to streams.

[•] Yields to streams:

 $\begin{array}{lll} {\rm Good-0.2-1.ft^3/s/mi^2} \\ {\rm Fair-0.05-0.2\ ft^3/s/mi^2} \\ {\rm Poor--Less\ than\ 0.05\ ft^3/s/mi^2} \\ {\rm (Tharpe,\ 1975,\ Fig.\ 5)} \end{array}$

DETERMINATION OF BRINE CONTAMINATION

In order to identify areas of brine contamination, the characteristics of freshwaters and brines must be known. Knowing the water-quality characteristics of freshwaters and brines and knowing the chemical and physical reactions taking place in freshwater aquifers and streams enables the hydrologist to use these water-quality characteristics to identify contaminated freshwater.

Freshwater Quality

Generally, the quality of shallow (less than 300 ft) ground water in the five study areas is such that the water is usable for many purposes. The water from most aquifers in Tertiary deposits is soft, slightly acidic, and has low dissolved-solids concentration. The specific conductance (an indicator of the dissolved-solids concentraton) is generally less than 100 μ S/cm. Although, water-quality differences exist between aquifers, the predominant ions in water in most shallow aquifers are calcium, sodium, and bicarbonate. Chloride concentrations are less than 20 mg/L in water from the Cockfield aquifer and the Mississippi River valley alluvial aquifer. Water in aguifers in Tertiary and Quaternary deposits often are interconnected and mixing of water occurs. Water in Quaternary deposits generally is more mineralized and higher in pH than water in Tertiary deposits. In the Miocene and Citronelle aquifers that underlie loess deposits the water is moderately-hard to hard, has a pH near 7.0 units, and has a moderate amount of dissolved solids. Specific conductance values range from 100 to more than 500 uS/cm and chloride concentrations are less than 20 mg/L. Site locations and the results of chemical analyses of water samples collected from uncontaminated areas are described in the water-quality section of each study area and chloride concentrations are shown in illustrations.

The water quality of streams change throughout the year. During periods of heavy rainfall when most streamflow originates from precipitation runoff, the water quality will approach the chemical quality of precipitation. During dry periods when most streamflow originates from ground-water inflow, the water quality of streams will approach that of the ground water discharging into the stream. Consequently, the water quality of a stream during low-flow periods will be an indicator of the chemical quality of water from shallow aquifers cut into by the stream. Several streams that drain the study areas were sampled at sites of no known oil-field activity during periods of low streamflow. Generally, the water samples at these sites contained lower dissolved solids and chloride concentrations than in streams in areas of known oil-field activity. The results of analyses and site locations are given in tables and in the water-quality sections of each study area.

Typical stream-water quality in study areas 3 and 4, the eastern third of area 2, and the southern third of area 5 is represented by water quality at the hydrologic benchmark site (site whose drainage area has a minimum of human activity). The water in Cypress Creek near Janice, Miss., (Hydrologic Benchmark site 02479155) is generally soft (hardness as CaCO₃ averages 8.9 mg/L), slightly acidic (pH ranges from 4.4 to 7.8 units) and has a less than 50 mg/L dissolved-solids concentration.

Brine-Water Quality

In contrast to the low dissolved-solids concentrations of typical shallow ground water and streams in southern Mississippi, the dissolvedconcentrations of brines produced during oil production are extremely high (table 3). Hawkins and others (1963, p. 10-18) and Carpenter and others (1974, p. 1195-1199) report dissolved-solids concentrations ranging from about 50,000 mg/L in the relatively shallow Wilcox Formation, to more than 300,000 mg/L in the deeper Lower Cotton Valley Selected water-quality analyses typical of brines that potentially enter and mix with waters of streams and shallow ground water in the five study areas are listed in table 3. Sodium and chloride are the predominant ions in all brines associated with oil and gas; however, the proportion of sodium and chloride varies between for-The sodium to chloride ratio ranges from 0.60 in the comparatively shallow Wilcox brines to 0.32 in deeper Hosston Formation brines. Although some variation is evident, it is apparent that the sodium to chloride ratio of these brines generally decrease in proportion to an increase in calcium and dissolved-solids concentrations.

Several elements present in very small concentrations in shallow ground water are in comparatively large concentrations in brines. In Mississippi, strontium concentrations range from less than 50 mg/L in water from the Tuscaloosa Group to more than 2,000 mg/L from the Rodessa Formation. Bromide concentrations ranged from less than 100 mg/L in water from the Wilcox Formation to more than 2,000 mg/L from the Lower Cotton Valley Formation.

Geochemical Reactions

Concentrations of dissolved ions in brines entering shallow ground water will be chemically altered and diluted when mixed with freshwater in shallow zones. Dilution will occur in proportion to the degree of mixing. Mixing of different water types is dependent upon the residence time, density of the brine, ground-water gradient, and the rate of ground-water movement into and through surficial aquifers. In general, longer residence time and more rapid rates of ground-water movement provide a greater opportunity for mixing in freshwater zones. Because chloride and bromide are generally conservative elements in nature, they are less likely to be involved in chemical reactions in surficial aquifers than other chemical constituents, and their concentrations will not be altered significantly, except by dilution.

Table 3.--Selected chemical analyses of brines from oil fields in the study areas (From Hawkins and others, 1963, P. 10-18.)
(Results in milligrams per liter)

Refer- ence No.	r- Field	Formation	Cal- cium (Ca)	Mag- Nesi- um (Mg)	Sodium (Na)	Barium, Stron- tuim (Ba,Sr)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	*Bro- mide (Br)	Total Dis. Solids	Sodium/ Chloride Ratio
					Adams	Adams County						
31	Carthage Point	Wilcox	1900	570	50700	399	339	00	85300	78	138809	0.59
45	Deerfield	Wilcox	3200	£ 59	55100	208	28.5	0	92400	9 %	151634	8
65	Kingston	Wilcox	2700	1300	52200	17.	36	0	88000	87	144566	85.
77,	Lagrange	Wilcox	2000	8	24000	277	268	0 ;	88600	87	145568	.
<u> </u>	Sibley Carthage Point	Wilcox L. Tuscaloosa	13600	14 6 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	45800 38900	¥ Š	153 153	9 0	71400 88500	£ 6}	142553	44.
46	Cranfield		14000	1000	45900	75	125	1200	97500	495	159725	.47
					Clarke	Clarke County						
220	Langsdale	Eutaw	3800	671	31500	'n	128	0	57200	395	93299	55.
* 23	Quitman	Cotton Valley	32600	3700		SR 1500	ı	ı	175400	1860	283700	.37
					Forres	Forrest County						
289	Pistol Ridge Pistol Ridge	Eutaw	7200	1070	51000	21	336	747	94000	495	153953	¥.4
		7000					,					
					Frankli	Franklin County						
140		Wilcox	2000	730	57300	144	95	1	94000	8	154125	×
146	Richardson Cr	Wilcox	1100	650	32200	- 8	533	0 0	23400	2 \$	87649	8
7	אפודה כו	MATCOA	3	9	378	2	6 7	>	3	\$	1040	8
					Jasper	County						
211	Heidelburg	Eagle Ford	7000	1700	46100	0	16	0	88500	451	143391	.52
* 72	Soso	Rodessa	34700	2570	57700	SR 2060	•	•	156400	1160	255900	.37
* 4 * 4	Soso	Hosston	33000	2330	55600	SR 2150	•	' ;	156100	1210	251800	%:
#	bay springs	L. Cotton Valley	4/300	2790	92000	74 T/80	ı	143	00//61	2500	005525	ડ.
					Jefferso	Jefferson County						
23	Sunnyside	Wilcox	2400	380	53600	171	238	0	87800	92	144398	.61

Table 3.--Selected chemical analyses of brines from oil fields in the study areas--Continued (Results in milligrams per liter)

Refer- ence No.	- Field	Formation	Cal- cium (Ca)	Mag- Nes1- Um (Mg)	Sodium (Na)	Barlum, Stron- tuim (Ba,Sr)	Bicar- bonate (HCO ₃)	Sul- fate (S04)	Chlo- ride (Cl.)	*Bro- mide (Br)	Total Dis. Solids	Sodium/ Chloride Ratio
					Jones County	ounty						
230	Sandersville Reedy creek	Eagle Ford Rodessa	7500	1600 3510	44700 58300	20 \$2340	8 '	0	86900 185900	424	140766 304800	0.51
					Lamar County	County						
283	Baxterville	L. Tuscaloosa	18800	2200	26300	35	18	R	126400	882	203748	44.
					Lincoln County	County						
152 160 161	Brookhaven Mallalieu Sweetwater	Tuscaloosa Tuscaloosa Tuscaloosa	12100 14500 14200	1100 960 910	48700 56300 51000	1565 9 0	0 0 128	153 169 114	99600 115300 106200	579 700 630	161633 18 <i>7</i> 229 172552	.49 .49
					Madison County	County						
207	Pickens	Eutaw	7200	1400	43300	83	305	式	83300	3 4	135559	.52
					Wayne County	ounty						
261	Eucutta E. Yellow Creek	Eagle ford	7500	1800	45500	£4 &	49	00	88600 82400		143449	12.
* 17	Cypress Creek Diamond	Smackover		2720 2550	69500 48800	\$1730 \$1060	1 1		184200 150500	1820	302400 242300	8.55
					Yazoo County	ounty						
189 193	Tinsley Tinsley	Austin Eagle ford	4000 7000	900	44900	75	304 198	7 88	78700 85300	387 454	128811 139384	<i>1</i> 2
,	* Face Callian Later	2000	90									

^{*} From Collins and others, 4966, p. 19-25. * From Carpenter and others, 1974,P. 1195-1199. § Strontium only

Concentrations of some dissolved ions will be altered by cationexchange reactions when contacting specific types of aquifer materials such as clays and sands. As the brines and freshwater-brine mixtures travel through the aguifer, sodium, calcium, and magnesium may take part in ion-exchange reactions. Normally, divalent ions (Ca^{+2}, Mg^{+2}) displace monovalent ions (Na⁺) adsorbed on the clay-mineral surfaces contacted in the aquifer. However, this reaction will be reversed if monovalent ions are in greater abundance (Davis and DeWiest, 1966, p. 90-91) as is the case when brines enter shallow aguifers. The effect of ion exchange reversal would be to alter the proportion of sodium and calcium in solution. Thus, the resultant sodium to chloride ratio of contaminated freshwater aquifers may be less than in the brine. However, anion concentrations generally are not changed significantly by cation exchange reactions. Fryberger (1975, p. 157) found that strontium concentrations in water moving through the aguifer decreased faster than can be accounted for by dilution. He attributed this to the precipitation of strontium as a sulfate. (Fryberger (1975, p. 158) also found that the pH of ground water decreased near the source of brine contamination, then increased downgradient toward the fringe of contamination.

Geochemical reactions were considered for selection of sampling parameters in this study. However, full geochemical implications are beyond the scope of this report.

<u>Definition of Contamination</u>

The extent that freshwater is controlled by the chemical character of brines and the general behavior of selected dissolved ions when mixing in freshwater aquifers and streams are the criteria used for defining contamination. Definitions of terms for this study are as Uncontaminated water: chloride concentration less than Water probably contaminated: 20 mg/L. chloride concentrations 20 to 50 mg/L. Contaminated water chloride concentration greater than Chloride concentrations are less than 20 mg/L in shallow ground waters (less than 300 feet depth) and streams in the study areas under natural conditions: therefore water with a chloride concentration greater than 20 mg/L is probably contaminated. Water with a chloride concentration ranging from 20 to 50 mg/L probably is contaminated, but not necessarily by an oil-field brine. Water with a chloride concentration greater than 50 mg/L is contaminated, probably by an oil-Supplementary characteristics of water that are used to field brine. indicate oil-field brine contamination are sodium to chloride ratios less than or equal to 0.60, and higher bromide and strontium concentrations than found in water from outside oil-producing areas.

STUDY AREA 1

Study area 1 encompasses 250 mi² in eastern Yazoo and northern Madison Counties (fig. 2). The data are discussed by two subareas, to more clearly illustrate contamination and show relationships between individual water samples. The Subarea A (Pickens) is located south of Pickens, Miss., in northern Madison County and northeastern Yazoo County. The second, the Subarea B (Tinsley), is located in and near the Tinsley oil field in south-central Yazoo County.

Subarea A (Pickens)

Significant differences are apparent in the water quality of Loves Creek near Pickens (07289503) and Doaks Creek near Canton (07289530) which drain outcrops of the Cockfield Formation in Madison County The water in Loves Creek, which drains part of Pickens oil field was a sodium-chloride type during this study. In Loves Creek the chloride and sodium concentrations were 230 and 120 mg/L, respectively. The sodium to chloride ratio (0.52) is within the range of values for three brines from Pickens field reported by Hawkins and others (1963, p. 15). In Loves Creek, bromide and strontium concentrations were 3.2 and 0.5 mg/L, respectively. The water in Doaks Creek, a stream draining an area unaffected by oil production, is a calcium and sodium-Both the sodium and chloride concentrations were bicarbonate type. 10 mg/L in Doaks Creek. Differences in water quality in the outcrop of the Cockfield aguifer were apparent in a shallow dug well, D19, located within Pickens oil field, and a shallow dug well, A31, located outside the oil field. Chloride concentrations were 71 and 3.3 mg/L in water from wells D19 and A31, respectively. Concentrations of other major dissolved ions were also higher in water from well D19 than in well A31. The water quality of A31 is probably typical of the water at shallow depth in the outcrop of the Cockfield aquifer in the subarea.

Subarea B (Tinsley)

Field personnel were unable to locate wells screened at shallow depths in the Citronelle Formation in Tinsley oil field. Numerous land owners reported that shallow wells (approximately 100 ft deep or less) at one time produced water of good quality but subsequently produced salty water and were destroyed. Domestic water is now supplied by a rural water association or by wells tapping deeper aquifers. The quality of uncontaminated shallow ground water from the Citronelle Formation in the Tinsley area is probably similar to that of well R43, approximately 2.5 mi east of Oil City, Miss. Concentrations of calcium, magnesium, and sodium were greater than 10 mg/L in well R43. Chloride cencentrations of ground water and streams in the Tinsley area are shown in figure 4.

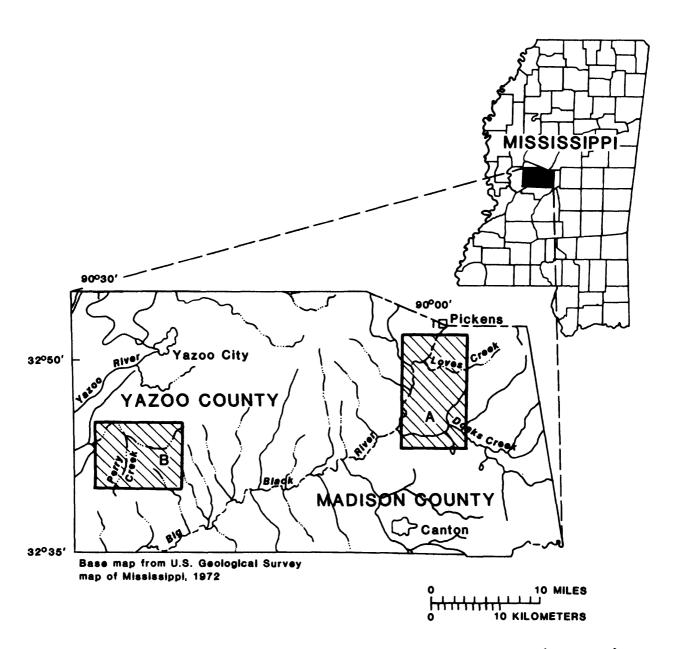


Figure 2.—Location of study area 1 showing subarea A (Pickens) and subarea B (Tinsley).

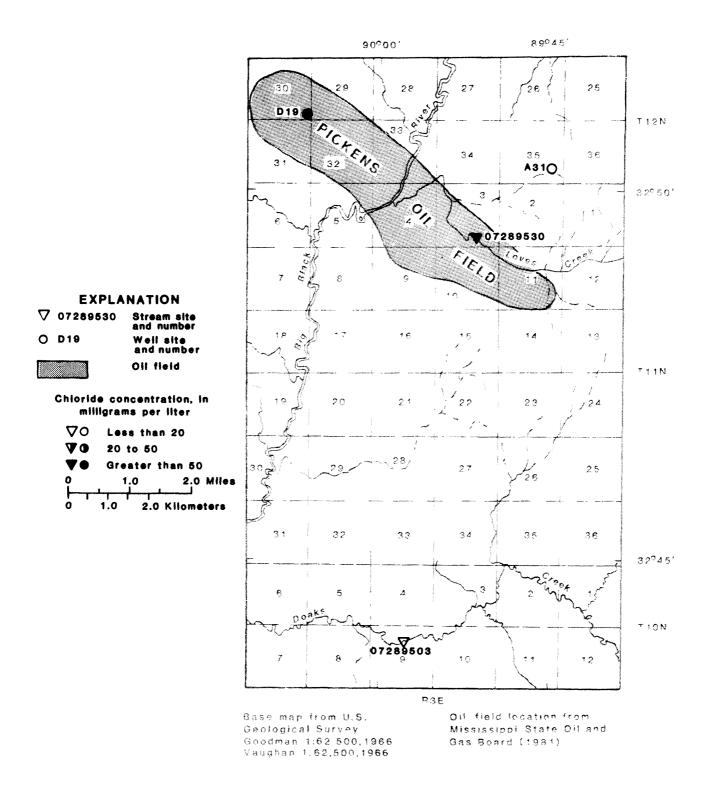


Figure 3.--Chloride concentrations at ground-water and surface-water sites in subarea A (Pickens), 1982.

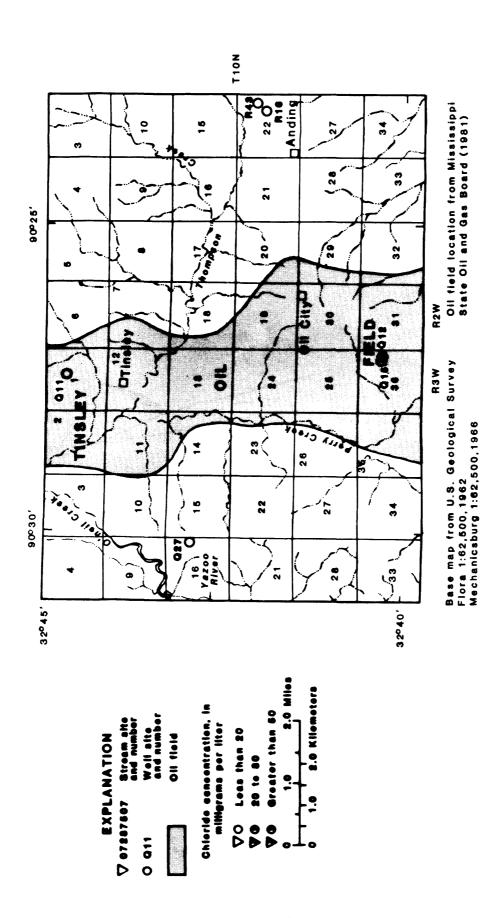


Figure 4. — Chloride concentrations at ground-water and surface-water sites in subarea B (Tinsley), 1982.

Analyses of water from two wells screened in the Cockfield aquifer, one located in Tinsley oil field (Q11), and one located east of the oil field (R16), indicate water of similar quality. The water is a sodium bicarbonate type with sodium concentrations ranging from 63 to 94 mg/L. Chloride, calcium, magnesium, and sulfate concentrations were 10 mg/L or less.

Water quality in the upper part of the Sparta Sand is significantly different than in the lower part near Oil City. Water from well Q12, a 990-foot domestic well screened in the upper part of the Sparta Sand in Tinsley oil field, was reported by the owner to have become salty. Records of the Mississippi Bureau of Geology show that a water sample collected from well Q12 by that agency and analyzed by the Mississippi State Board of Health had a chloride concentration of 7,550 mg/L. The water from well Q15 in the lower part of the Sparta Sand at a depth of 1,183 ft is less mineralized than water in the upper part. The chloride concentration was 8.9 mg/L and the sodium concentration was 73 mg/L. Calcium, magnesium, and sulfate concentrations were 10 mg/L or less. Contamination of the upper Sparta Sand may indicate improper brine disposal in wells.

Chloride concentrations were 690, 2,100, and 2,300 mg/L; the sodium concentrations ranged from 350 to 1,200 mg/L; and sodium to chloride ratios ranged from 0.51 to 0.57 in three streams draining the Tinsley oil field near Tinsley.

Tables 4 and 5 give descriptions of surface-water and ground-water sites. Tables 6 and 7 give results of analyses of samples collected at surface-water and ground-water sites, respectively, in area 1.

Summary and Conclusions

Surface waters and shallow ground water are contaminated in the Pickens and Tinsley oil fields.

In the Pickens oil field, a chloride concentration of 230 mg/L and a sodium to chloride ratio similar to that of oil field brines indicate that water in Loves Creek is contaminated. Water samples were collected during a relatively dry period when discharge originates primarily from inflow of ground water; thus, inflow of contaminated ground water is the most probable source of contamination. However, the sparsity of wells preclude verifying the source of contamination in the Cockfield aquifer in the vicinity of Loves Creek, and the possibility of surface contamination cannot be eliminated. Although it was impossible to determine the water quality of the Cockfield aquifer in the vicinity of Loves Creek in Yazoo County, the chloride concentration in water from well D19 indicates that part of the Cockfield aquifer is contaminated in Pickens oil field.

Table 4.--Location and drainage area of surface-water sites in area 1

	Site		Loca	tion	Drainage
County	Number	Station Name	Lat	Long	Area (mi ²)
Madison	07289503	Loves Creek nr Pickens, MS	324924	0895829	11.7
Madison	07289530	Doaks Creek nr Canton, MS	324354	0895936	161
Yazoo	07287574	Unnamed Branch nr Oil City, MS	323956	0902758	
Yazoo	07287580	Perry Creek at Tinsley, MS	324327	0902813	
Yazoo	07287587	Thompson Creek at Tinsley, MS	324338	0902744	

Table 5.--Records of wells in area 1

County	Well Number	Station Number	Owner	Loc Sec.	ation T.	R.	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit
Madison	A031	325021089571501	C. Ford	SESE35	12N	03E	250	32	1240CKF
Yazoo	0019	325109090011401	L. Newell	SESE30	12N	03E	250	55	1240CKF
Yazoo	Q011	324446090272401	J. D. Twiner	NWNE11	13N	03W		500	124 CCKF
Yazoo	Q012	323953090270301	Joe Brooks	SENE36	10N	03W	340	990	124SPRT
Yazoo	Q015	324019090270301	J. Brooks	SENE36	10N	03W	340	1183	124SPRT
Yazoo	Q027	324246090300601	C. S. Williams	NWSW16	10N	03W	207	640	124SPRT
Yazoo	R016	324158090232101	E. M. Creswell	NWSE22	10N	02W	300	840	1240CKF
Yazoo	R042	324508090230001	Cresswell Drlg	SENE22	10N	02W	320	80	122CTHL

122CTHL-Catahoula Sandstone 124CCKF-Cockfield Formation 124SPRT-Sparta Sand

Table 6.--Chemical analyses of surface water in area 1

(Dissolved constituents and hardness given in milligrams per liter, except as indicated)

Site Number	Date of col- lec- tion	Time (Hours)	Stream- flow (ft ³ /s)	Spe- cific con- duct- ance pH (µS/cm)(Units)	Temper- ature (Deg°C)	as	Cal- cium (Ca)	Mag- nesi- um (Mg)	Sodium (Na)	Sul- fate (So4)	Chlo- ride (Cl)	Bromide (Br)	Boron (B) (µg∕L)	Stron- tium (Sr) (ug/L)
					Mad	ison Co	untv							
07289503 07289530	09/09/82 09/09/82		0.33 12.0	954 6.6 113 6.7	23.5 22.0	149 30	33 7.0	16 3.	120 1 10	54 13	230 10	3.24 	<10 	500
					Ya	zoo Cou	intv							
					-	200 000		····		······································				
07287574 07287580 07287587	08/04/82 07/01/82 07/01/82	1300	0.59 1.9 2.1	8200 7.9 7300 8.0 2500 8.3	28.0 32.5 35.0	817 669 348	200 160 82	63	1200 1200 350	10	2300 2100 690	7.13	300	7900 9200 2400

Table 7.--Chemical analyses of ground water in area 1 (Dissolved constituents and hardness given in milligrams per liter, except as indicated)

Well Yumber	Water bearing unit	Well depth (ft)	Date of col- lec- tion	Spe- cific con- duct- ance (µS/cm)	pH (Units)	Temper- ature (Deg°C)	Hard ness as CaCo ₃	Cal cium (Ca)	Mag nesi- um (Mg)	Sodium (Na)	Sul- fate (So4)	Chlo- ride (Cl)	Bromide (Br)	Boron (B) (µg/L)	Stron- tium (Sr) (ug/L)
	*					W.	dison C	'a atu							
						M &	dison c	ounty							
A031	124CCKF	32	08/05/82	74	6.4	21.5	30	9.8	1.4	3.5	6.0	3.3			
							azoo Co	unty							
DO 19	124CCKF	55	08/05/82		5.7	19.0	122	29	12	47	27	71			
0011	124CCKF	500	08/05/82		7.5	22.5	30	7.1	3.0	63	10	4.4			
Q012	124SPRT	990	05/16/77		7.4	24.0	392		4	 73	10	7550 8.9			
Q015	124SPRT	1193	08/04/82	318	8.6	24.0	5	1.6	0.4	13	10	8.9			
Q027	124SPRT	640	08/04/82	445	7.8	23.0	14	3.1	1.4	100	17	8.7			
R016	124CCKF	840	08/04/82				3	0.8	0.3	94	10	3.1			
R043	122CTHL	80	08/04/82		6.9	19.5	262	57	29	21	3.0	8.5			

122CTHL-Catahoula Sandstone 124CCKF-Cockfield Formation 124SPRT-Sparta Sand

^{*} Analysis by Mississippi State Board of Health

In the Tinsley oil field, chloride concentrations range from 690 to 2,300 mg/L and sodium to chloride ratios within the range of brines produced in Tinsley field, indicate that three streams were contaminated. Channels of Perry and Thompson Creeks have cut through the loess into the underlying Citronelle strata in areas of Tinsley field. Inflow of water from the Citronelle aquifer may be the source of contaminated water in Perry and Thompson Creeks.

Oil-field brine contamination of the Sparta Sand in the Tinsley oil field is indicated by a sample from a 990-foot deep well having a chloride concentration of 7,550 mg/L. In contrast, a sample from a 1,183-foot deep well completed in the lower Sparta Sand in the same area had a chloride concentration of $8.9 \, \text{mg/L}$.

STUDY AREA 2

Study area 2 in southwestern Mississippi includes all of Adams and Franklin, the northwestern corner of Amite, the southern half of Jefferson, and the northern half of Wilkinson Counties (fig. 5). This approximately 1,800 mi² area contains numerous oil fields. chitto River, St. Catherine Creek, and South Fork Coles Creek are the largest streams draining the study area. Related data are discussed by six arbitrarily assigned subareas. Data from surface-water samples collected in the Homochitto drainage basin, are discussed as a group. Six subareas include a combination of related ground-water and surfacewater data. Subarea A (Natchez), is located east and north of Natchez in Adams County. St. Catherine Creek and its tributaries drain the majority of this study area. Subarea B (Second Creek), is located in southwestern Adams County and is drained by Second Creek and its tributaries. Old St. Catherine Creek drains the western part of the subarea. Subarea C (Kingston), is near Kingston in south-central Adams County. Subarea D (southeastern Adams County), is located in east-central and southeastern Adams County. Adjacent subarea E (Knoxville), is centered near Knoxville in southwestern Franklin County. Subarea (Cannonsburg), is located partially in northeastern Adams County and partially in southwestern Jefferson County.

Homochitto Drainage Basin

Water-quality data for several years prior to the study are available for two sites on the Homochitto River at Rosetta (07292500) and near Doloroso (07294500) in study area 2 (fig. 6). Water-quality data were collected by the U.S. Geological Survey in 1982 and the Mississippi Bureau of Geology in 1975 at site 07293490 on Sandy Creek near Kingston and at site 07294000 on Second Creek at Sibley. During this study, water-quality data were collected from three sites on the Homochitto River and sites on most major tributaries (fig. 6).

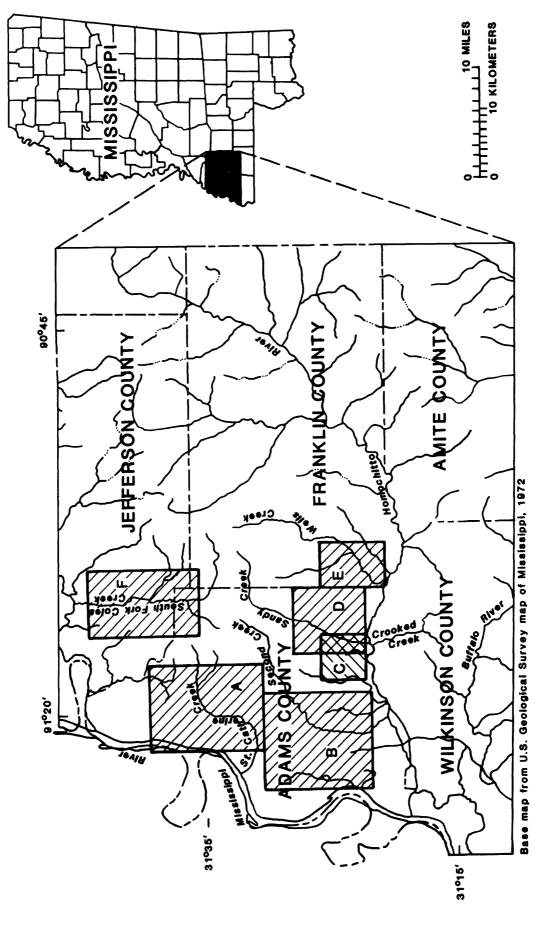


Figure 5.--Location of study area 2 showing subareas A (Natchez), B (Second Creek), C (Kingston), D (southeastern Adams County), E (Knoxville), and F (Cannonsburg).

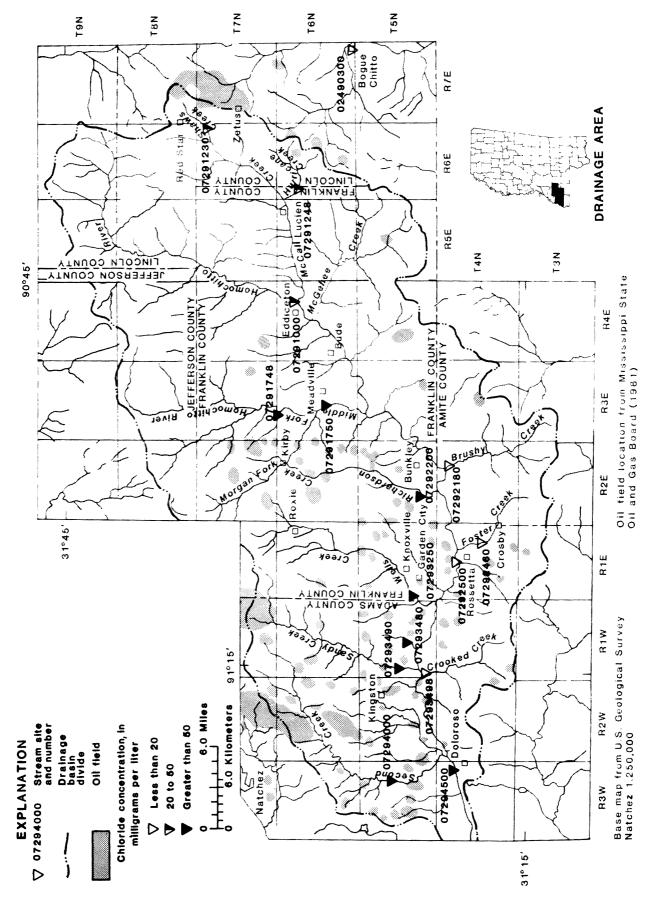


Figure 6.--Chloride concentrations during low flow at surface-water sites in the Homochitto drainage basin, July and August, 1982.

The water at most sites upstream of the Homochitto River at Rosetta (07292500) was suitable for most uses. An exception was the water from Tom Branch near Meadville (07291748) where the chloride concentration was 690 mg/L. At the remaining sites sampled upstream of Rosetta in the Homochitto basin, chloride concentrations ranged from 6.0 to 63 mg/L.

The water quality of Brushy Creek near Bunkley (07292180) is of particular interest because there is no known oil production and little human activity in the drainage basin. Therefore, the water quality at this site should approximate the background water quality of streams draining outcrops of the Miocene aquifers in the area. Water in Brushy Creek has a hardness as CaCO $_3$ of 11 mg/L and is low in dissolved-minerals as indicated by a specific conductance of 48 $\mu S/cm$. Concentrations of all major dissolved ions are less than 10 mg/L and the strontium (26 $\mu g/L$) and bromide concentration (0.02 mg/L) are considered to be low.

Water-quality samples were collected from the Homochitto River at Rosetta (07292500) periodically from 1958 to 1971. Monthly sampling commenced in October 1974 and continued until September 1981. Bimonthly water samples were collected in the 1982 water year. The mean specific conductance of samples collected between 1958 and 1982 is 86 $\mu S/cm$ indicating a low dissolved-solids concentration. Sodium and chloride are the predominant ions having a mean concentration of 11 and 14 mg/L, respectively (U.S. Geological Survey, 1965-82).

Statistical analysis of 100 water-quality samples from the Homochitto River at Rosetta indicates that a good correlation (correlation coefficient of 0.87) exists between specific conductance and chloride concentrations. A plot of the specific conductance versus chloride concentration is shown in figure 7. These points lie scattered around the regression line defined by the equation y = 0.20(x) - 1.84, where x is the specific conductance in microsiemens per centimeter and y is the chloride concentration in milligrams per liter.

Using the regression equation, chloride concentrations were calculated from specific conductance values determined from water samples collected once-daily from 1975 to 1981. The specific conductance value was substituted for ${\sf x}$ in the equation, and ${\sf y}$, the chloride concentration, was calculated. A comparison of calculated daily chloride concentrations and mean-daily discharge is presented in figures 8 and 9.

Chloride concentrations of river water at Rosetta are generally highest during low-streamflow and generally remain less than 20 mg/L during high streamflow periods. However, chloride concentrations exceeded 20 mg/L several times each year, usually during or slightly after a relatively small increase in stream discharge. For example, on November 3, 1975, the chloride concentration was 18 mg/L and mean-daily discharge was 509 ft 3 /s. Discharge increased the following 2 days to 791 ft 3 /s on November 5, and the chloride concentration also increased and was 30 mg/L on November 5. Chloride concentrations usually decrease when streamflow is greater than 1,000 ft 3 /s.

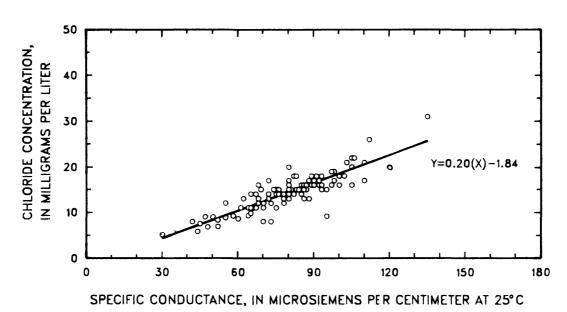


Figure 7.—Specific conductance versus chloride concentration in the Homochitto River at Rosetta (07292500), 1958-83.

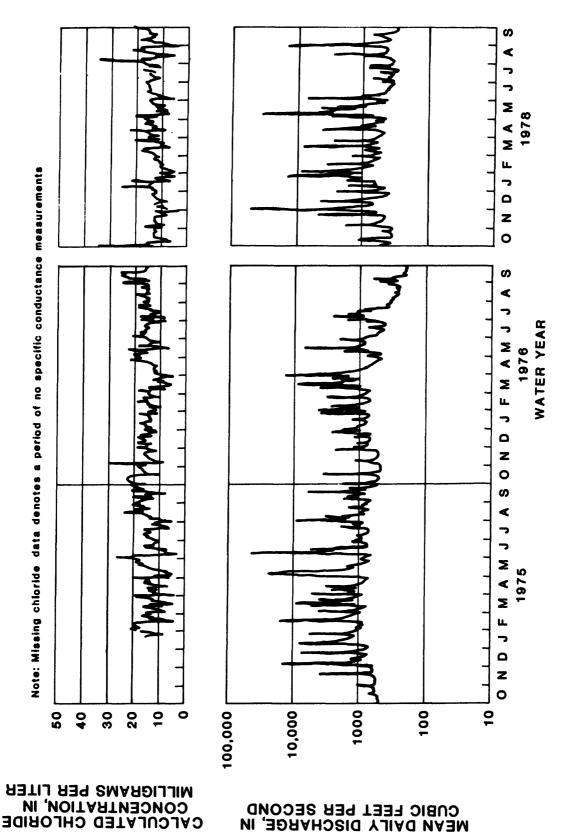


Figure 8.--Calculated chioride concentrations and mean-daily discharge in the Homochitto River at Rosetta (07292500), 1975, 1976, and 1978 water years.

ဟ ⋖ Σ ∢ **∑** Note: Missing chloride data denotes a period of no specific conductance measurements ۵ Z 0 ဟ ⋖ 7 WATER YEAR 7 Ψ Ψ Ψ 7 ۵ Z 0 တ ⋖ **∑** ∀ ۵ z 0 100 30 20 1000 10 90 40 10 0 100,000 10,000

Figure 9.--Calculated chioride concentrations and mean-daily discharge in the Homochitto River at Rosetta (07292500), 1979-1981 water years.

MEAN DAILY DISCHARGE, IN CUBIC FEET PER SECOND

CALCULATED CHLORIDE CONCENTRATION, IN MILLIGRAMS PER LITER

The water at most sites on Homochitto River tributaries downstream of Rosetta is more mineralized than water at upstream sites (fig. 6) and may be unsuitable for some uses. Chloride concentrations in water at sites on Pretty Creek (07293480), Wells Creek (07293250), and Sandy Creek (07293490) were greater than 100 mg/L during the study. Sodium concentrations in water at these sites were correspondingly high, ranging from 94 mg/L in Wells Creek to 300 mg/L in Pretty Creek. Sodium to chloride ratios ranged from 0.48 to 0.59 at these sites.

Analysis of low-flow samples collected in 1961 and 1962 by the U.S. Geological Survey indicate that the water in Sandy and Second Creeks have contained high sodium and chloride concentrations in the past. In four samples collected on Sandy Creek (07293490) chloride concentrations ranged from 62 to 71 mg/L and sodium concentrations ranged from 33 to 37 mg/L. Chloride concentrations on Second Creek (07294000) ranged from 21 to 408 mg/L in five samples of water collected during 1961-62.

In the fall of 1975, the Mississippi Bureau of Geology collected water samples containing chloride concentrations of 155 and 112 mg/L at Sandy Creek (07293490) and 53 and 55 mg/L at Second Creek (07294000) (Childress and others, 1976, p. 117-121). In 1961, chloride concentrations ranged from 67 to 200 mg/L and sodium concentrations ranged from 39 to 126 mg/L in five water samples collected by the U.S. Geological Survey from the Homochitto River at Doloroso (07294500).

Subarea A (Natchez)

Water-quality data are available for streams and the shallow Miocene aquifer in subarea A (Natchez). During the study, dissolved solids in St. Catherine Creek, as indicated by the specific conductance increased downstream (fig. 10). The specific conductance was 320 $\mu\text{S/cm}$ in St. Catherine Creek at Washington (07290893) increasing to 1,350 $\mu\text{S/cm}$ downstream (07290915). There was a corresponding increase in chloride concentration from 6.2 mg/L at the upstream site (07290893) to 320 mg/L at the downstream site (07290915). Concentrations of strontium quadrupled and bromide concentrations tripled in the water from the upstream to downstream site. The sodium to chloride ratio at the downstream site was 0.50.

Callahan and others (1964, p. 21) state that although part of the increased mineralization of water in St. Catherine Creek is from municipal and industrial sources, some sodium chloride in streams originate from oil fields. Reconnaissance sampling on March 15, 1963, indicated that the chloride concentration was 132 mg/L in Melvin Bayou and the chloride concentration was 1,360 mg/L in Kittering Creek. Data from Childress and others (1976, p. 118) show chloride concentrations exceeded 100 mg/L in 10 of 12 samples collected in July 1975 and January 1976 from surface-water sites in the Melvin Bayou and Kittering Creek drainage basins.

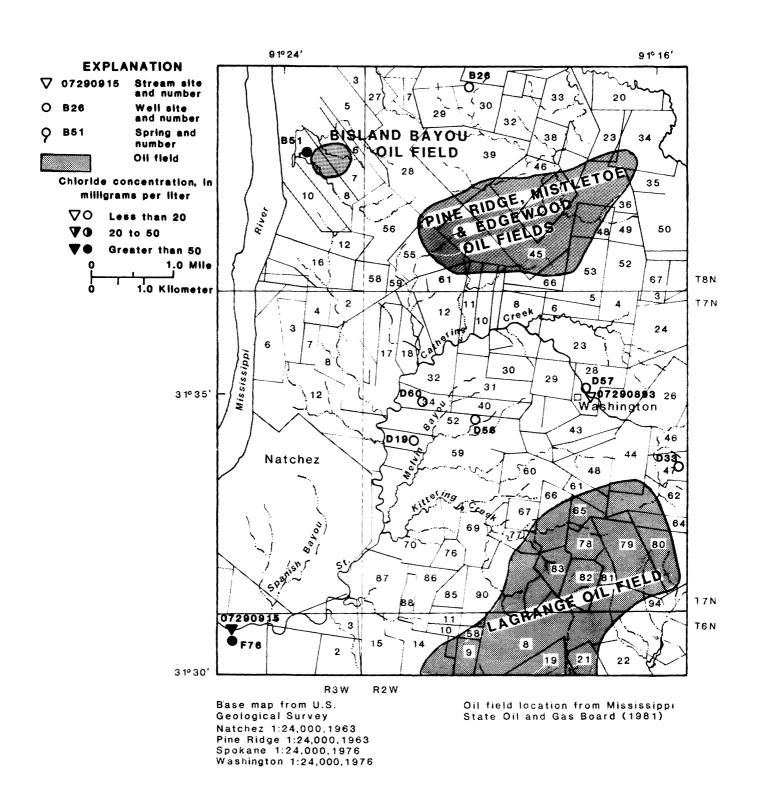


Figure 10.--Chloride concentration at ground-water and surface-water sites in subarea A, 1981-82.

The specific conductance of ground water in St. Catherine Creek drainage basin ranged from 460 to 900 $\mu\text{S/cm}$. The lowest values were measured in samples from five wells completed in the Miocene aquifer system in T. 7 N., R. 2 W., (fig. 10). An analysis of the major ions in a sample from one well, D19, indicates that the water is a calcium, magnesium, bicarbonate type in this area. Chloride concentrations are less than 20 mg/L. Maximum specific conductance values were in samples from well F76 located in T. 6 N., R. 3 W. Well F76 is completed in the Mississippi River valley alluvial aquifer. Specific conductance values increased from 800 $\mu\text{S/cm}$ in 1981 to 900 $\mu\text{S/cm}$ in 1982. During this same period, chloride concentrations doubled (48 to 97 mg/L).

The specific conductance of ground water from the Miocene aquifer system in other parts of subarea A was variable. The conductance of a sample from well B26 was 760 $\mu S/cm$ and had a chloride concentration of 5.5 mg/L. In contrast, the conductance of a sample from Spring BS01 near Bisland Bayou oil field was 4,590 $\mu S/cm$. The sodium concentration was 680 mg/L and the chloride concentration was 1,200 mg/L resulting in a sodium to chloride ratio of 0.57.

Subarea B (Second Creek)

Water in parts of the Mississippi River valley alluvial aquifer and Miocene aquifer system in the Carthage Point and Mt. Hope oil fields contained chloride concentrations greater than 20 mg/L in 1982 fig. 11). Chloride concentrations in water of 13 (F13-F18, F20-F23, F100-F102) industrial supply wells ranged from 9.0 to 170 mg/L. Samples from wells nearest the oil field generally contained the highest chloride concentrations. Water from nearby wells F82 and F85 in the Miocene aquifer had chloride concentrations less than 20 mg/L.

Water-quality deterioration has been observed in some shallow Miocene sands in the eastern part of the subarea (fig. 11). The chloride concentration of water in well G7 increased from 9 mg/L in 1969 to 470 mg/L in 1973. Water from well G8, located in the same area and about the same depth as G7, also became more mineralized and chloride concentrations increased from 32 mg/L in 1973 to 330 mg/L in 1974 (Childress and others, 1976, p. 136). A water sample collected from well G8 by the Geological Survey in 1974, had a chloride concentration of 1,200 mg/L. Chloride concentrations were also greater in the shallower sands during this period. The chloride concentration in water from well G19 (140 ft deep) was 3,600 mg/L (Childress and others, 1976, p. 136).

Chloride concentrations in samples from five other wells (F85, 94, J6, 26, 31) completed in Miocene sands were less than 20 mg/L. The chemical analysis of the sample from well J31 may be representative of typical Miocene aquifer water quality. The major ions are calcium, magnesium, and bicarbonate. The chloride concentration was less than 10 mg/L. The sodium to chloride ratio was 2.0.

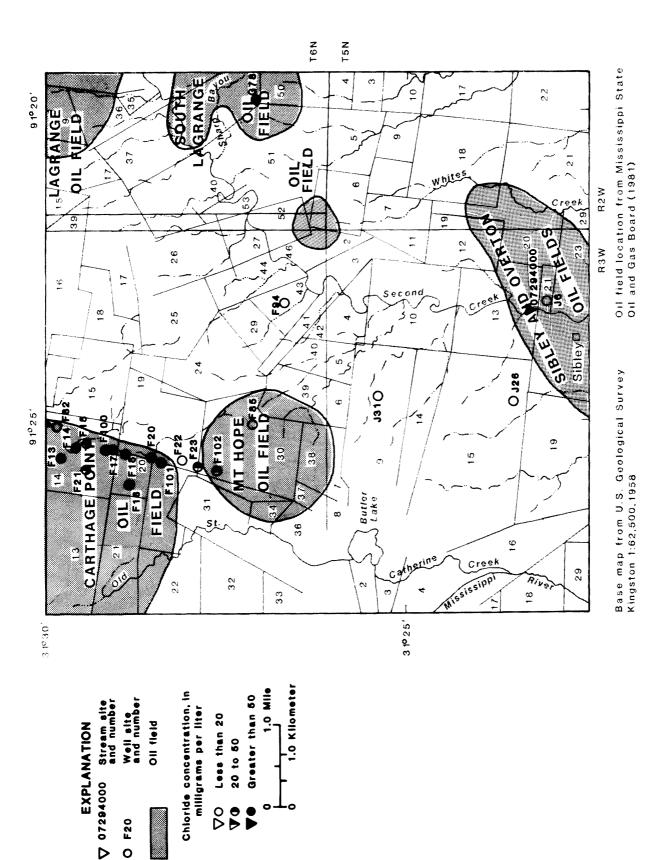


Figure 11.--Chloride concentrations at ground-water and surface-water sites in subarea B, 1981-82.

Subarea C (Kingston)

In subarea C (Kingston), the U.S. Geological Survey collected and analyzed water samples from shallow wells in the Miocene aquifer in 1963 (fig. 12). Chloride concentrations ranged from 10 mg/L to 2,850 mg/L. The highest chloride concentrations were in water from wells K4 (30 mg/L) and L4 (2,850 mg/L), each less than 100 feet deep. Chloride concentrations in water in three wells (K2, 5, L5) ranging from 380 to 480 ft in depth were 20 mg/L or less.

Subarea D (Southeastern Adams County)

Two wells (L19 and L20) were sampled in the southeastern Adams County subarea during the study (fig. 13). Water from well L19 (35 ft deep) located approximately 2.0 mi southeast of Kingston, contained a chloride concentration of 120 mg/L in 1981 and 88 mg/L in 1982. Water from well L20 (100 ft deep), located 3 miles east-southeast of Kingston, contained a chloride concentration of 2.6 mg/L in 1981.

Water from three springs 6 miles southeast of Kingston in Adams County contained chloride concentrations ranging from 95 to 990 mg/L. Specific conductance of the water from the springs ranged from 314 umhos at site LSO1 to 3,190 at site LSO2 (fig. 13). The sodium to chloride ratio ranged from 0.59 to 0.65.

Water from two wells in the shallow Miocene aquifer in eastern Adams County is more highly mineralized than water from two nearby wells (fig. 13) in 1982. In water samples collected from wells H16 and H17, the specific conductances were 730 and 925 umhos and chloride concentrations were 220 and 250 mg/L, respectively (fig.13). The chloride concentration in water of well H17 increased from 98 to 250 mg/L between September 1981 to April 1982. Water from well H20, located approximately 0.5 mi southwest of well H16, had a specific conductance of 78 umhos and a chloride concentration of 6.6 mg/L. Water from well H21, located 0.7 mi south of H17, had a specific conductance of 67 umhos and a chloride concentration of 4.5 mg/L.

Subarea E (Knoxville)

Water from a shallow well (L22) near Knoxville in Franklin County (fig. 14), located approximately 300 ft north of a site formerly used as an evaporation pit, was highly mineralized. The specific conductance was 11,800 μ S/cm. Concentrations of all major ions except magnesium and sulfate were greater than 1,000 mg/L and concentrations of bromide and strontium were 3.74 mg/L and 5,600 μ g/L. The sodium concentration was 1,200 mg/L and the chloride concentration was 3,900 mg/L, resulting in a sodium to chloride ratio of 0.31. Samples from two other wells (L15 and L21) also had chloride concentrations greater than 20 mg/L. Sodium to chloride ratios ranged from 0.41 to 0.51.

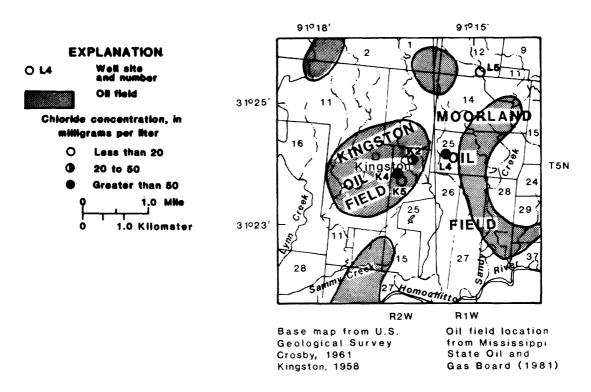


Figure 12.--Chloride concentrations at ground-water sites in subarea C, 1963.

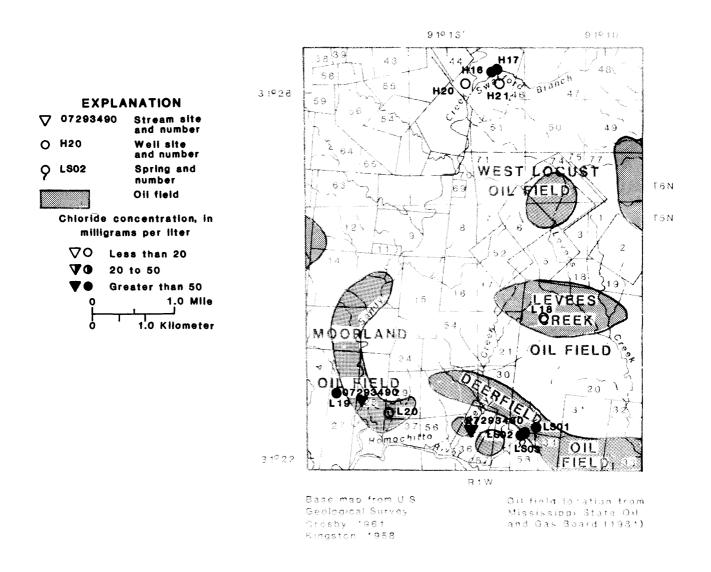


Figure 13.--Chloride concentrations at ground-water and surface-water sites in subarea D, 1981-82.

The chloride concentration in a stream draining several oil fields in the Knoxville area (Wells Creek at site 07293250) was 180 mg/L and the sodium concentration was 94 mg/L, resulting in a sodium to chloride ratio of 0.52.

Subarea F (Cannonsburg)

Several studies in the last 20 years have shown the mineral content of water in South Fork Coles Creek in the Cannonsburg area is considerably above the normal range for streams in the area. Callahan and others (1964, p. 21) state that between June 1961 and January 1963, the specific conductance of water in South Fork Coles Creek ranged from 754 to 4,150 uS/cm and the chloride concentration ranged from 210 to 1,320 mg/L. Callahan further states that during a specific conductance reconnaissance of South Fork Coles Creek, on October 5, 1961, from its mouth to the headwaters, values obtained ranged from 60 to 1,100 μ S/cm with the greatest change occurring between Cannonsburg and the Adams-Franklin County line. Childress and others (1976, p. 118) also found that chloride concentrations exceeded 20 mg/L at sites in the South Fork Coles Creek drainage basin. During this study, chloride concentrations were 100 mg/L on Folkes Creek near Cannonsburg (07290850) and 65 mg/L on South Fork Coles Creek near Fayette (07290860) (fig. 15).

In 1962, the chloride concentrations changed in a relatively short period of time in two wells in the Sunnyside oil field in Jefferson County (Callahan and others, 1964, p. 5) near Cannonsburg. The chloride concentration in the water of well M3 decreased from 6,500 mg/L in July to 244 mg/L in August. The chloride concentration in well M4 increased from 57 mg/L in July to 66 mg/L in October. The chloride concentration of water in 10 other wells (ranging in depths from 25 to 400 ft) in the vicinity of well M3 was less than 10 mg/L.

Summary and Concusions

Oil-field brine contamination is apparent in both surface and ground water in study area 2. The water at sites on three major streams (the Homochitto River, St. Catherine Creek, and South Fork Coles Creek, and their tributaries) contained chloride concentrations that ranged from less than 20 to over 500~mg/L. Wells indicating contaminated ground water are present in the drainage basin of these streams.

Descriptions of ground— and surface—water sites are given in tables 8 and 9. Tables 10 and 11 give results of analysis of samples collected at ground— and surface—water sites in area 2.

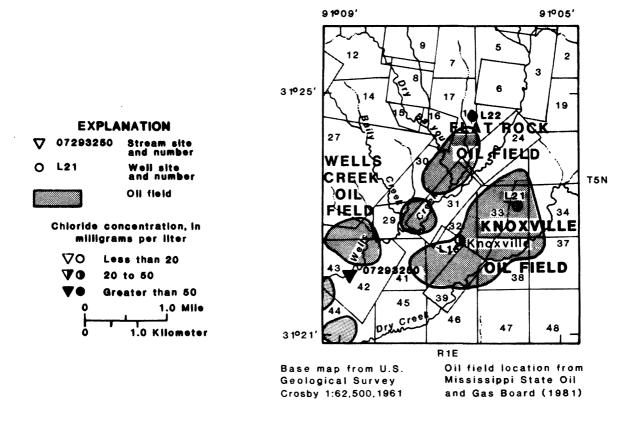


Figure 14.—Chloride concentrations at ground-water and surface-water sites in subarea E, 1981-82.

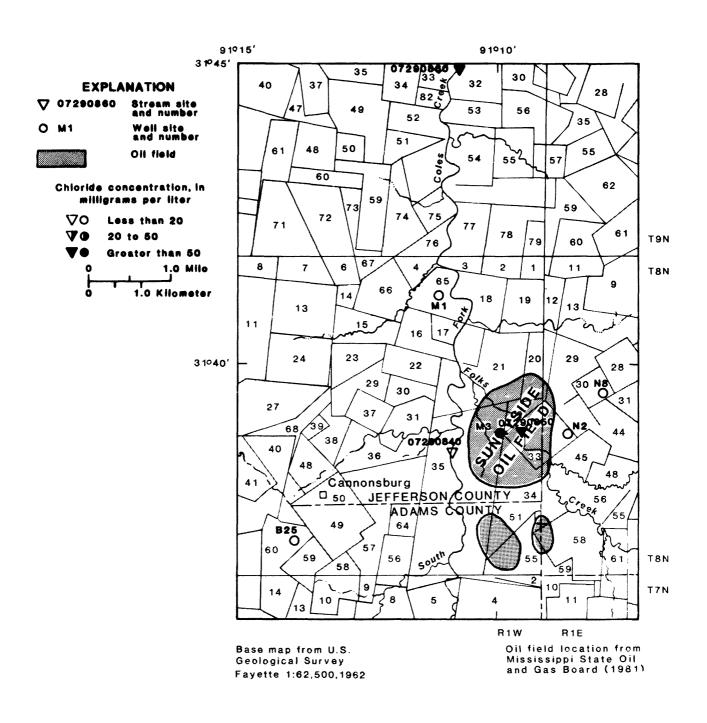


Figure 15--Chloride concentrations at ground-water and surface-water sites in subarea F, 1981-82.

Although the water in the Homochitto River is suitable for most uses, it has been contaminated periodically. Contamination generally increases downstream of Rosetta (07292500). Data indicate that chloride concentrations at Rosetta increase to over 20 mg/L several times yearly. Higher chloride concentrations were observed during periods of increases in mean-daily discharge, which suggests that the probable source of chloride is from surface runoff. During periods of higher runoff, greater concentrations of chloride likely are entering the Homochitto River but are diluted to an extent that contamination is not noticable. The comparatively large increase in chloride concentrations at low streamflow suggests ground water is mixing with water of the Homochitto River and its tributaries and further suggests contamination of the shallow aquifer in the lower part of the drainage basin. Contaminated shallow Miocene aguifers were observed in several areas of the Homochitto drainage basin. Chloride concentrations ranging from 95 to 990 mg/L in water from three springs near Deerfield oil field indicate that brines are entering the shallow ground water in the area. Chloride concentrations of 220 and 250 mg/L indicate contaminated water in two wells in eastern Adams County. Chloride concentrations were significantly greater in these wells than in water from two nearby wells.

Ground-water sampling in 1963 showed two areas of contamination of the shallow Miocene aquifer near Kingston. Water from two wells less than 100 ft deep contained water having chloride concentrations greater than 20 mg/L. Several wells in shallow Miocene sands located near Second Creek northwest of Kingston were contaminated between 1973 and 1974. The chloride concentration in water from well G8 near Kingston increased from 32 mg/L in 1973 to 1,200 mg/L in 1974. A shallower sand (140 ft) in this area was also contaminated between 1973 and 1974.

The water in St. Catherine Creek in western Adams County near Natchez becomes increasingly contaminated downstream. During the study, chloride concentrations increased from 6.2 mg/L at site 07290893 near the headwaters to 320 mg/L at site 07290915 near the mouth. Some contamination originates from municipal and industrial wastes from Natchez and some originates from tributaries (Melvin Bayou and Kittering Creek) draining oil fields. In 1963, chloride concentrations exceeded 100 mg/L in Melvin Bayou and Kittering Creek, and in 1975 and 1976, chloride concentrations exceeded 100 mg/L in 10 of 12 samples collected at sites in Melvin Bayou and Kittering Creek drainage basins.

The Mississippi River valley alluvial aquifer is contaminated by oil-field brines near the mouth of St. Catherine Creek. Chloride concentrations were greater than 20 mg/L in the water of 13 of 14 industrial-supply wells.

Brine contamination is present in the Cannonsburg area of Jefferson and Adams Counties. Water samples collected by the U.S. Geological Survey from South Fork Coles Creek between June 1961 and January 1963 contained chloride concentrations ranging from 210 to 1,320 mg/L. The Mississippi Bureau of Geology also found that chloride concentrations exceeded 20 mg/L in the South Fork Coles Creek basin. The chloride concentration was 100 mg/L on Folkes Creek (07290850) and 65 mg/L on South Fork Coles Creek (07270860). In 1962, water in two domestic wells in Sunnyside oil field contained chloride concentrations greater than 50 mg/L. Chloride concentrations were less than 10 mg/L in water from 10 wells ranging in depth from 25 to 400 ft in the vicinity of Sunnyside oil field.

STUDY AREA 3

Study area 3, located in southwestern Mississippi, includes most of Lincoln, the northern half of Pike and a small corner of northeastern Amite Counties (fig. 16). This area of approximately 480 mi² includes McComb, Smithdale, Brookhaven, Little Creek, and Mallalieu oil fields. The Bogue Chitto and its tributaries drain a large part of study area 3 including the Brookhaven, Little Creek, and Mallalieu oil fields. Related surface-water data are grouped together and discussed under the topic of the Bogue Chitto drainage basin. Ground-water and surfacewater data collected in and near the major oil fields are discussed by arbitrarily assigned subareas. Subarea A (the Brookhaven area), is located in north-central Lincoln County near Brookhaven, Miss. Subarea B (McComb-Mars Hill) is located in northwestern Pike and northeastern Amite Counties. Subarea C (Little Creek), is in northeastern Pike County and a small part of south-central Lincoln County.

Bogue Chitto Drainage Basin

Natural surface water in the Bogue Chitto drainage basin (fig. 17) in study area 3 may be characterized by the quality of the water at Allbritton Creek near Bogue Chitto (02490350), which drains a rural area of no known oil production. The water is soft (hardness as CaCO_3 , 6 mg/L), slightly acidic (pH of 5.9 units), and as indicated by the specific conductance (32 μ S/cm), is very low in dissolved solids. The concentration of all major ions was less than 10 mg/L. Bromide (less than 0.1 mg/L) and strontium (11 μ g/L), are present in very small concentrations.

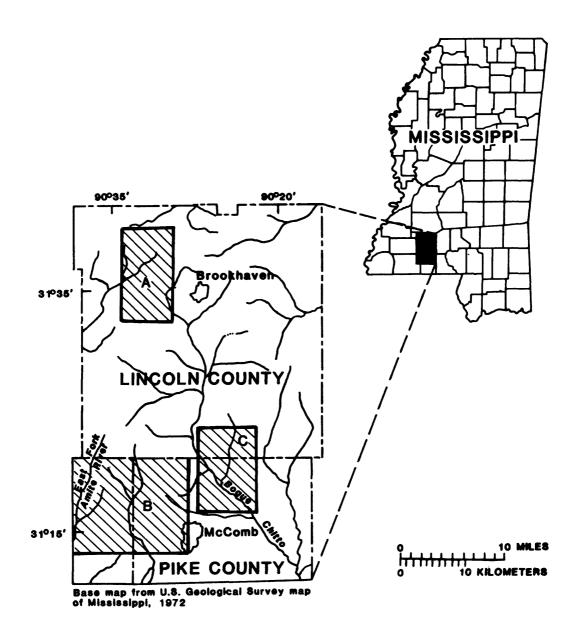


Figure 16.--Location of study area 3 showing subareas A (Brookhaven), B (McComb-Mars Hill), and C (Little Creek).

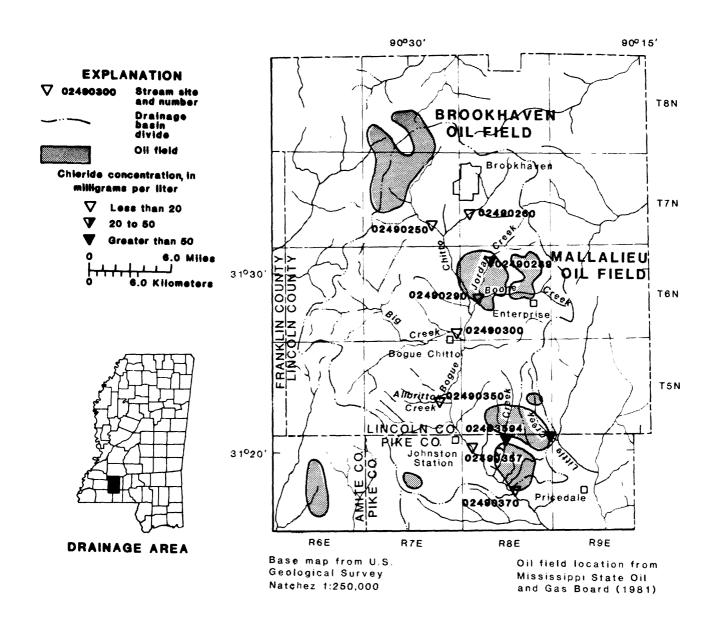


Figure 17.—Chloride concentrations during low flow at surface—water sites in the Bogue Chitto drainage basin, July 1982.

Water at three sites on tributaries of Boque Chitto that drain oil fields were slightly more mineralized than in Allbritton Creek The specific conductance in Jordan Creek near Enterprise (02490350). (02490289) was 165 μS/cm. The sodium and chloride concentrations were 21 and 36 mg/L, respectively. The bromide concentration of water in Jordan Creek near Enterprise was similar to that in Allbritton Creek, but the strontium concentration (190 µg/L) although low, was significantly higher. Inflow of water from Jordan Creek contributed about 80 percent of the chloride load and about 30 percent of the discharge at site 02490290 on Boone Creek. The chloride concentration at this site on Boone Creek was 15 mg/L. Downstream on Lazy Creek near Johnstons Station (024903594), the specific conductance as 267 μ S/cm, the sodium concentration was 38 mg/L, and the chloride concentration was 70 mg/L. In Little Creek near Ruth (02490415), the specific conductance was 400 μ S/cm, the sodium concentration was 53 mg/L, and the chloride concentration was 110 mg/L. The sodium to chloride ratio at both sites (02493594 and 92490415) was 0.48. Bromide (0.54 mg/L) and strontium (230 μg/L) concentrations in Little Creek were significantly greater than in Allbritton Creek.

Tributary inflow of mineralized water through the study area increased the major ion concentration in downstream reaches of Bogue Chitto. In July 1982, sodium concentrations increased from less than 5.0 mg/L at the most upstream side near Brookhaven (02490250) to 8.7 mg/L at the most downstream site near Pricedale (02490370). Similarly, chloride concentrations increased from 7.1 mg/L near Brookhaven to 13 mg/L near Pricedale.

Subarea A (Brookhaven)

Normal shallow (less than 300 ft depth) ground-water quality in study area 3 can be characterized by the quality of water from Lincoln County well G57 (fig 18). The water is soft (hardness as CaCO $_3$ ranging from 4 to 6 mg/L), and as indicated by the specific conductance (22 to 38 μ S/cm), is very low in dissolved solids. Major ion concentrations are less than 10 mg/L. The bromide (less than 0.10 mg/L) and strontium (5 μ g/L) concentrations are low.

The water in the Citronelle aquifer and shallow Miocene aquifers in the Brookhaven oil field (fig. 18) is more mineralized than normal. The specific conductance of water in 11 of 14 wells is greater than 100 $\mu\text{S/cm}$, ranging from 38 to 3,290 $\mu\text{S/cm}$. Calcium, magnesium, and sulfate concentrations were less than 10 mg/L in all samples except a sample from well G65. In water from well G65, only the sulfate concentration is less than 10 mg/L, and sodium and chloride concentrations are greater than 10 mg/L. In samples collected from 8 of 14 wells, the chloride concentration exceeded 20 mg/L. The bromide concentration is significantly greater in wells G65, G61, and G62, than in well G57, ranging from 0.33 to 5.5 mg/L. The strontium concentration in the three wells ranged from 27 to 2,500 $\mu\text{g/L}$ in well G57.

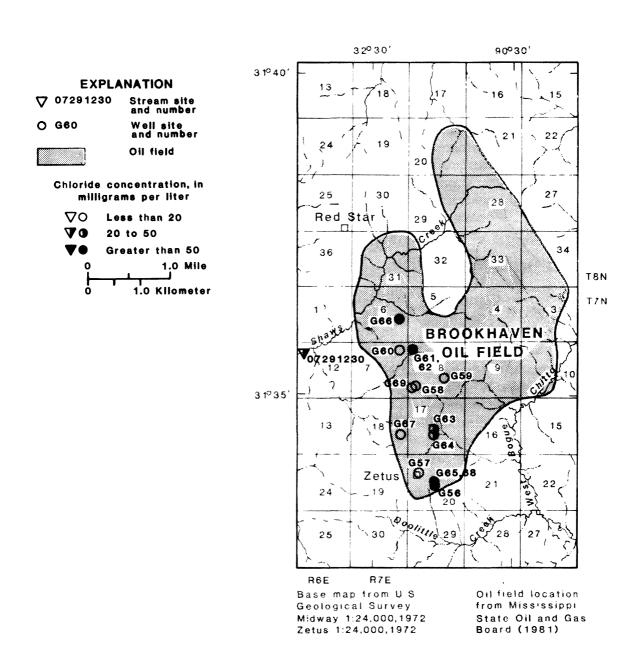


Figure 18.—Chioride concentrations at ground-water and surface-water sites in subarea A, 1981-82.

Water from a stream draining the Brookhaven Oil Field, Shaws Creek at Red Star (07291230), had a specific conductance of 108 μ S/cm and a chloride concentration of 23 mg/L.

Subarea B (McComb-Mars Hill)

The results of analyses of samples indicate that water in the Citronelle aquifer in the Smithdale oil field is highly mineralized (fig. 19). Analyses of 13 samples collected in 1981 show that chloride concentrations ranged from 1.8 to 580 mg/L. Five of these wells (E82-E86) plus an additional well (E87) were sampled in 1982. Four of the five wells (E83-E86) resampled had greater chloride concentrations than in the previous sample. The chloride concentrations decreased slightly (270 to 260 mg/L) from samples collected from well E82. The higher chloride concentrations (greater than 20 mg/L) were clustered in sections 16 and 17 near Mars Hill.

Water from the East Fork Amite River at Mars Hill (07376640) a stream draining the Smithdale oil field, had a specific conductance of 110 μ S/cm, a sodium concentration of 13 mg/L, and a chloride concentration of 24 mg/L. The resulting sodium to chloride ratio was 0.54.

Field personnel were able to locate only one shallow water well suitable for sampling in McComb oil field in Pike County (D190). Analysis of a sample from this well indicates that the Citronelle aquifer in this area is more mineralized than normal. The water from well D190, 100 feet deep, had a specific conductance of 359 uS/cm, a sodium concentration of 42 mg/L, and chloride concentration of 98 mg/L in 1982. Well D44, located approximately 1 mile north of D190 and screened in the Citronelle aquifer at a depth of 111 ft was sampled in 1966 and the chloride concentration was 970 mg/L.

Subarea C (Little Creek)

Water samples at six ground-water sites in the Little Creek and Sweetwater oil fields contained significantly greater concentrations of the major dissolved ions than in samples from Pike County well Bl19 located just outside of the oil field. The specific conductance of samples from these six sites (B96, BS01, B105, B118, B123, and Q44) ranged from 80 to 1,340 μ S/cm. Concentrations of calcium, magnesium, and sulfate were less than 10 mg/L in samples from four sites. The calcium (33 mg/L), magnesium (12 mg/L), and sulfate (22 mg/L) concentrations in a sample from Pike County well B96 were greater than 10 mg/L and chloride concentrations were greater than 20 mg/L (fig. 20). The bromide concentrations in samples from well B105 (1.8 mg/L) and well B 123 (0.72 mg/L) were significantly greater than normal.

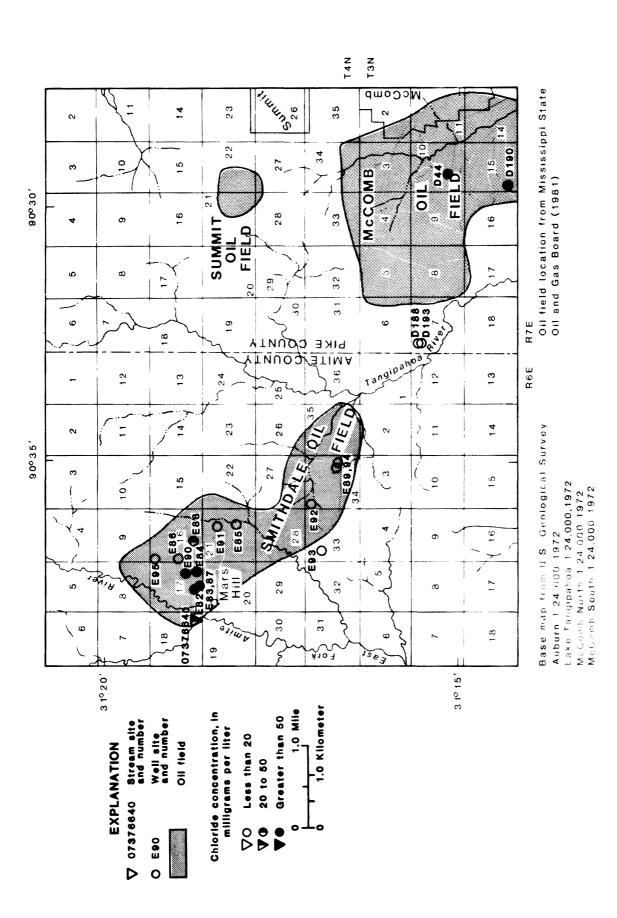


Figure 19.---Chloride concentrations at ground-water and surface-water sites in subarea B, 1981-1982.

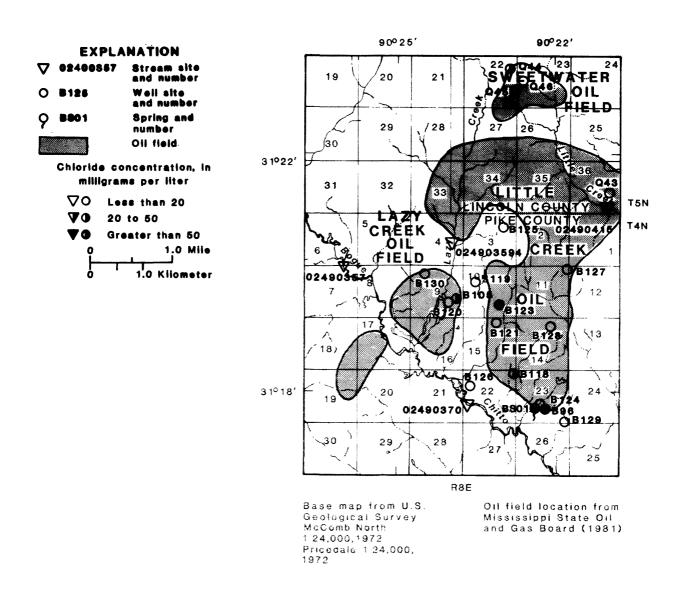


Figure 20.--Chloride concentrations at ground-water and surface-water sites in subarea C, 1981-82.

Summary and Conclusions

On the basis of increased mineralization, and in particular, increased chloride concentrations, it can be concluded that the shallow Citronelle and Miocene aquifers and some streams are contaminated by oil-field brines in the Brookhaven, Little Creek, Mars Hill, and McComb areas. The water quality of streams in these areas also is affected by inflow of oil-field brines.

Normally, concentrations of major dissolved ions are less than 10 mg/L in the Citronelle and shallow Miocene aquifers. Samples collected from 14 water wells in the Brookhaven oil field had chloride concentrations significantly greater than 10 mg/L, ranging from 20 to 980 mg/L.

Water from well G65, screened in the Citronelle aquifer, has a chloride concentration of 980 mg/L and is contaminated. A replacement well, G68, was drilled approximately 50 ft west to a depth of 308 ft and screened in a Miocene sand. The chloride concentration in this well is 20 mg/L. Although the water is of relatively good quality, the slightly increased chloride concentration suggests the potential for brine contamination in the Miocene aquifer. The chloride concentration from well G71 screened in the Miocene aquifer was 2.7 mg/L.

The slight increase in chloride concentration (23 mg/L) on Shaws Creek (07291230) during a period of low streamflow suggests that contaminated water from the Citronelle aquifer is entering Shaws Creek.

Descriptions of the ground— and surface—water sites in area 3 are given in tables 12 and 13, and the results of analysis of samples collected are given in tables 14 and 15.

STUDY AREA 4

Study area 4, located in south-central Mississippi, includes part of southern Marion, southern Lamar, southern Forrest, and northern Pearl River Counties (fig. 21). This area includes subarea A (Baxterville) and B (Pistol Ridge). The Baxterville subarea encompasses approximately 40 mi² including the Baxterville oil and gas field. The Pistol Ridge subarea includes approximately 30 mi² in a small corner of northeastern Pearl River and southwestern Forrest Counties.

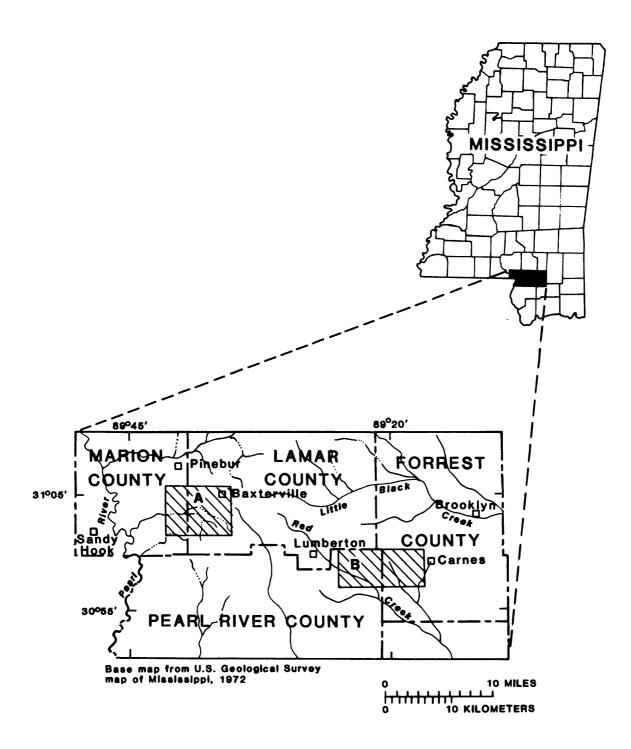


Figure 21.--Location of study area 4 showing subareas A (Baxterville) and B (Pistol Ridge).

Subarea A (Baxterville)

The water in Clear Creek became more mineralized as it flowed through study area 4 (fig. 22). Concentrations of all major dissolved ions except sulfate increased significantly. The water from Clear Creek near Baxterville (024892685), located upstream of the Baxterville oil field, was extremely low in dissolved solids; calcium and magnesium concentrations were less than 1.0 mg/L; sodium, chloride, and sulfate concentrations were less than 5.0 mg/L; and concentrations of bromide (0.07 mq/L) and strontium (8 $\mu q/L$) were low during the study. Downstream of Baxterville oil field, the water from Clear Creek near Pinebur (024892695) was more mineralized. Although sulfate concentrations increased, they were less than 5.0 mg/L. Calcium concentrations increased to 23 mg/L, sodium concentrations increased to 59 mg/L, and chloride concentrations increased to 150 mg/L. Concentrations of bromide (1.8 mg/L) and strontium (750 μ g/L) also increased significantly.

Inflow of water from an unnamed tributary of Clear Creek (02489269) is one source of highly mineralized water. The water at this site had a specific conductance of 1,070 $\mu\text{S/cm},$ a calcium concentration of 40 mg/L, a sodium concentration of 150 mg/L, and a chloride concentration of 320 mg/L. The bromide concentration was 2.89 mg/L and the strontium concentration was 1,500 $\mu\text{g/L}.$

Only four shallow water wells were available for sampling in the Baxterville subarea. Water in several other shallow wells reportedly had become salty and the wells were destroyed. Water from Lamar County well M85 was high in dissolved solids, as indicated by the specific conductance of 1,450 $\mu\text{S/cm}$. Concentrations of the major ions were greater than 20 mg/L. The chloride concentration was 430 mg/L and bromide and strontium concentrations were 3.0 mg/L and 610 $\mu\text{g/L}$, respectively. A water sample from Lamar County well M86 had a lower dissolved-solids concentration. Concentrations of all major ions were less than 10 mg/L except chloride. The chloride concentration was 24 mg/L.

Subarea B (Pistol Ridge)

Results of the chemical analyses of samples collected from sites on four tributaries of Red Creek indicate that the water in streams draining Pistol Ridge oil field is generally soft (hardness as CaCO3 ranges from 20 to 40 mg/L), slightly acidic (pH ranges from 4.9 to 5.9 units), and has a moderate concentration of dissolved solids as indicated by specific conductance that ranged from 150 to 309 $\mu S/cm$. The predominant ions in solution were sodium and chloride. The concentration of of sodium ranged from 13 to 34 mg/L and the concentration of chloride ranged from 38 to 77 mg/L (fig. 23), resulting in a sodium to chloride ratio that ranged from 0.34 to 0.47. Bromide concentrations ranged from 0.22 to 0.59 mg/L and strontium concentrations ranged from 48 to 370 $\mu g/L$.

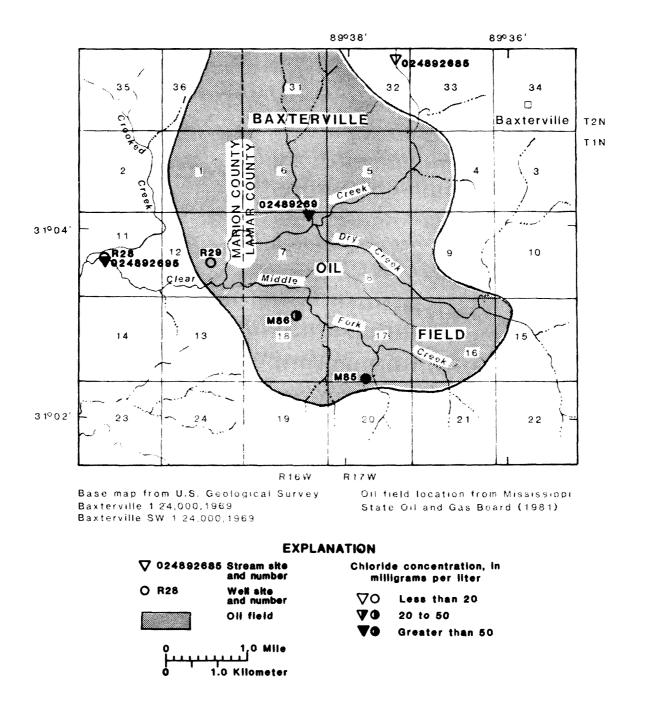


Figure 22.—Chloride concentrations at ground-water and surface-water sites in subarea A, 1981-82.

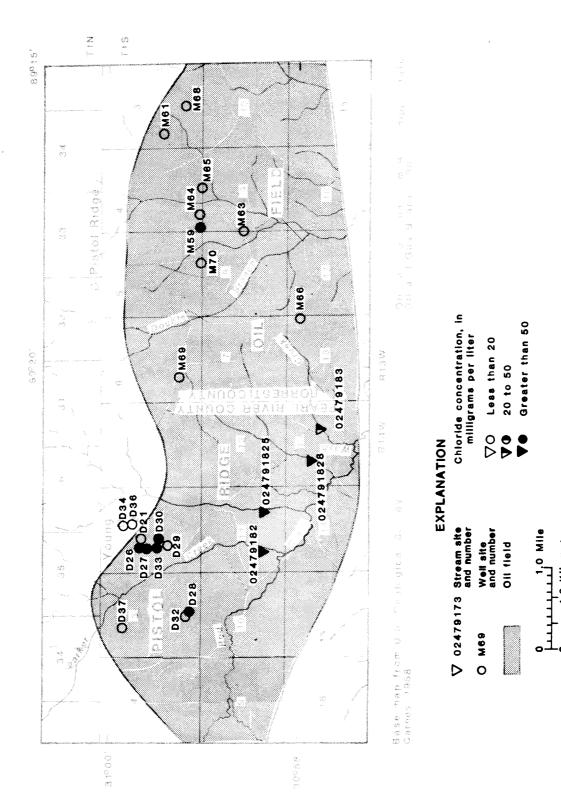


Figure 23.--Chloride concentrations at ground-water and surface-water sites in subarea B, 1981-82.

1.0 Kilometer

In two areas in the Pistol Ridge oil and gas field in Pearl River County, the Citronelle aquifer was more mineralized than normal (fig. 23). Water from wells D21, D29, D34, and D36 near Young had a low specific conductance (less than 100 µS/cm) and chloride concentrations less than 10 mg/L and is considered representative of the uncontaminated (normal) shallow water of the Citronelle aguifer in area 4. contrast, water from wells D26, D27, D30, and D33 was more highly mineralized. The water from these four shallow wells was moderatelyhard to very hard (hardness as CaCO₂ ranged from 82 to 540 mg/L), acidic (pH ranged from 3.6 to 4.5 units), and specific conductances ranged from 445 to 2,500 µS/cm. Sodium and chloride were the predominant ions and their ratios ranged from 0.28 to 0.43. However, calcium and magnesium concentrations also were significantly greater than in the uncontaminated wells. Bromide and strontium concentrations in well D27 were 5.38 mg/L and 1,600 μ g/L, respectively. The second area of more highly mineralized Citronelle ground water is in section 3, immediately west of Parker Creek. The chloride concentration is 98 mg/L in a sample from A well located approximately 0.2 mi north of D28 was reportedly abandoned due to saltwater contamination. Two other wells, D32 and D37, in section 3, yielded water with chloride concentrations less than 20 mg/L.

The Citronelle aquifer in an area of the Pistol Ridge oil and gas field in Forrest County contained more highly mineralized water than water from the Citronelle in other areas of Forrest County. A sample from well M60 had a specific conductance of 2,240 $\mu\text{S/cm}$, a sodium concentration of 160 mg/L, and a chloride concentration of 690 mg/L. Minor ions, bromide (4.57 mg/L) and strontium (1,400 $\mu\text{g/L}$) were also present in large concentrations. Two shallow wells in the immediate area of well M60 were reported to produce "salty" water; however, one well had been destroyed and field personnel were unable to sample the other. Water samples from Citronelle wells in other areas of Forrest County had specific conductance values less than 100 $\mu\text{S/cm}$ and chloride concentrations less than 20 mg/L (fig.23). Two wells M59 and M64 screened in the Miocene aquifer system in Forrest County yielded water that had specific conductance values greater than 100 $\mu\text{S/cm}$; however, the chloride concentrations were less than 5 mg/L.

Summary and Conclusions

Both ground and surface waters are contaminated in the Baxterville oil and gas field. Descriptions of the ground- and surface-water sites in area 4 are given in tables 16 and 17 and the results of analysis of samples collected at these sites are given in tables 18 and 19. One or more shallow aquifers (less than 300 ft in depth) in the study area are contaminated as indicated by chloride concentrations exceeding 20 mg/L in samples from two of four wells. Chloride concentrations in Clear Creek increased from less than 20 mg/L at site 024892685 upstream of the oil field to 150 mg/L at site 024892695 downstream of the oil field.

Chemical analyses of samples collected from four shallow wells screened in the Citronelle aquifer near Young in Pearl River County indicate brine contamination. Two streams, Parker Creek and an unnamed creek, are also being contaminated by inflow of the contaminated ground water as shown by the significant increase in chloride concentration through the oil field. Downstream, Dry and Wash Creeks also contained moderate concentrations of chloride, indicating that they also are draining areas where the Citronelle aquifer is contaminated.

The Citronelle aquifer is contaminated by oil-field brines in three areas in the Pistol Ridge oil and gas field in Forrest County. One well has a chloride concentration of 690 mg/L, and it was reported that several other wells in the immediate area were abandoned because they produced 'salty' water. Shallow Citronelle wells and deeper wells screened in the Miocene aquifer within about 1.5 mi of the contaminated area are not contaminated. Consequently, it appears that brine contamination, at the present time, is confined to a relatively small area of the Citronelle aquifer in Forrest County, but contamination of several streams indicate that the shallow aquifer probably is contaminated in other areas. However, it appears that the contamination has not yet migrated to the deeper Miocene aquifer system.

STUDY AREA 5

Study area 5, located in southeastern Mississippi, includes Clark and Jasper Counties and the northern half of Jones and Wayne Counties (fig. 24). This area of approximately 2,000 mi² includes numerous oil fields. The study area is drained by the Chickasawhay River and tributaries and by tributaries of the Leaf River. Two smaller areas of ground-water contamination were identified within the Chickasawhay River drainage basin and are discussed as separate topics. The Subarea A (East Yellow Creek) is located in north-central Wayne County in the East Yellow Creek oil field. The Subarea B (Terrell Creek) is partially located in southeastern Jasper County and northeastern Jones County in the Bryan oil field.

Leaf River Drainage Basin

Several Leaf River tributaries entering the Bogue Homo, Tallahala, Tallahoma, and Big Creeks were more mineralized than other streams in the area (fig. 25).

Four streams were sampled in the Bogue Homo drainage basin; Prairie Creek near Heidelburg (02474569), Old Julie Branch near Sandersville (024745735), Reedy Creek at Sandersville (02474574), and Terrell Creek near Sandersville (024745785). Specific conductance of samples from all sites ranged from 184 to 750 $\mu\text{S/cm}$. The chloride concentrations ranged from 150 to 160 mg/L at all sites except Reedy Creek where the concentration was 35 mg/L. At sites where the chloride concentrations were 150 mg/L or greater, bromide concentrations ranged from 0.86 to 1.6 mg/L. The strontium concentrations were 790 and 1,100 $\mu\text{g/L}$ on Prairie and Terrell Creeks, respectively.

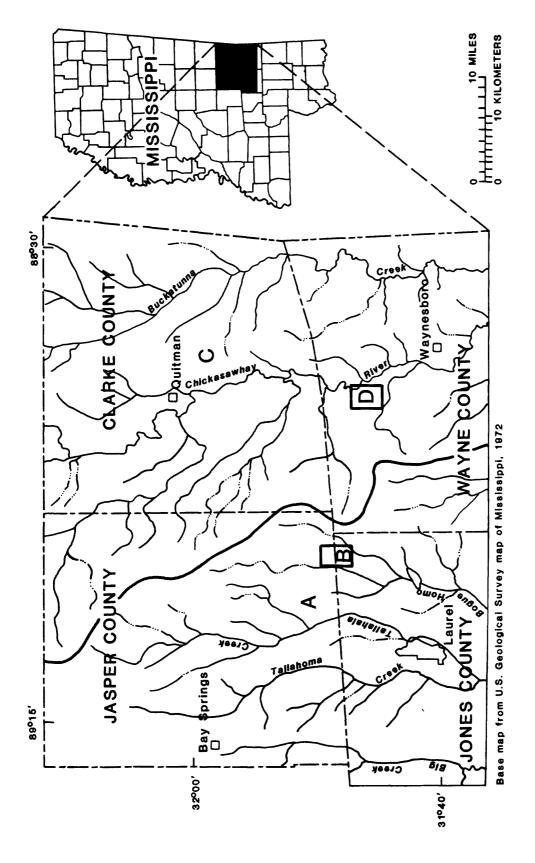


Figure 24.--Location of study area 5 showing subarea A (Leaf River drainage basin), B (Terrel Creek), C (Chickasawhay River drainage basin), and D (East Yellow Creek).

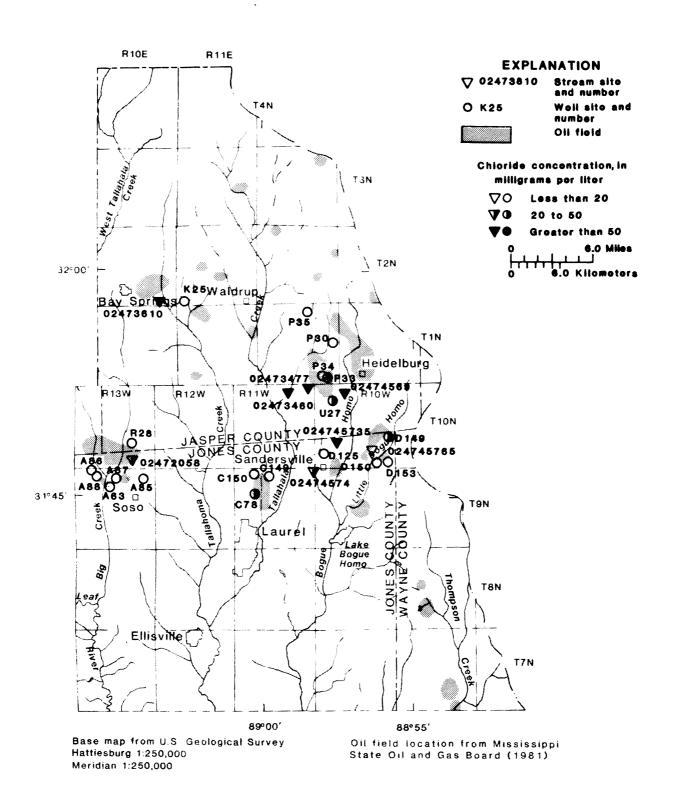


Figure 25.--Chloride concentrations at ground-water and surface-water sites in subarea A, 1981-82.

The U.S. Geological Survey measured water temperatures, specific conductance, and pH during the period 1965 to 1973 at Tallahatta Creek near Waldrup (02473480). The specific conductance was generally greater than 400 $\mu\text{S/cm}$ and ranged from 50 to 4,300 $\mu\text{S/cm}$. During the current study, the specific conductance was 392 $\mu\text{S/cm}$, the chloride concentration was 87 mg/L, and the sodium to chloride ratio was 0.44. One source of highly-mineralized water in Tallahatta Creek is inflow from Horse Branch (02473477). A sample collected from this site had a specific conductance of 2,290 $\mu\text{S/cm}$, chloride concentration of 760 mg/L, bromide concentration of 3.62 mg/L, and strontium concentration of 4,100 $\mu\text{g/L}$.

An unnamed stream near Bay Springs (02473810) in the Tallahoma Creek drainage basin was sampled during the study. The specific conductance of the water was 310 $\mu\text{S/cm}$ and the chloride concentration was 61 mg/L. Plant Branch near Soso (02472058) in the Big Creek drainage basin was also sampled. The specific conductance at this site was 117 $\mu\text{S/cm}$ and the chloride concentration was 27 mg/L.

Chickasawhay River Drainage Basin

Water samples were collected at two sites on the Chickasawhay River (fig. 26) in August 1982. The site on Chickasawhay River at Enterprise (02477000) was located upstream of the study area in an area of no known oil production. The site on Chickasawhay River near Waynesboro (02477500) was located downstream of most oil-producing areas.

Results of the analyses of samples collected in 1982 in both areas indicate that dissolved-solids concentrations increased slightly downstream from the Chickasawhay River at Enterprise to the Chickasawhay River near Waynesboro (02477500). Specific conductance increased from 74 to 121 $\mu\text{S/cm}$. Concentrations of all major ions, except magnesium, increased downstream but were 10 mg/L or less. Strontium concentrations increased from 58 to 120 $\mu\text{g/L}$ and bromide concentrations remained essentially unchanged, 0.03 and <0.04 $\mu\text{g/L}$, respectively.

Water-quality data collected by the Geological Survey at these sites prior to the study indicate that dissolved-solids concentrations generally were significantly greater downstream than upstream. The specific conductance ranged from 39 to 122 $\mu\text{S/cm}$ from 1959 to 1975 at the upstream site and from 48 to 936 $\mu\text{S/cm}$, (1963-65), at the downstream site. Concentrations of the major ions ranged from less than 10 to 36 mg/L in the Chickasawhay River at Enterprise and from less than 10 to 280 mg/L in the Chickasawhay River near Waynesboro.

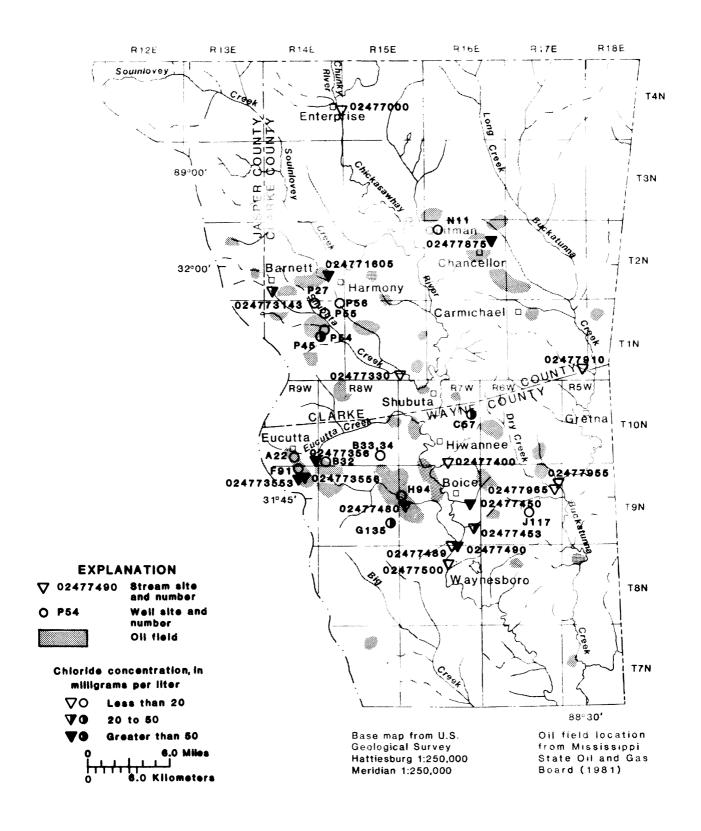


Figure 26.--Chloride concentrations at ground-water and surface-water sites in subarea C, 1982.

Regression equations can be used to estimate major ion concentrattions when only the specific conductance of a sample is known. Statistical analysis of water-quality data in the Chickasawhay River near Waynesboro indicates a good relationship (correlation coefficient of 0.99) between specific conductance and the chloride concentration (fig. 27). The equation of the line of best fit by least square regression analysis is:

Chloride concentration = 0.29 (specific conductance) -17

where: Chloride concentration is in milligrams per liter and specific conductance is in microsiemens per centimeter

When the specific conductance value is less than 100 μ S/cm the linear relationship for chloride does not apply.

Using the above regression equation, daily chloride concentrations from October 1963 to September 1974 for the Chickasawhay River near Waynesboro (02477500) were calculated. A plot of the resultant chloride values (fig. 28) indicated that dissolved chloride concentrations generally varied inversely with gage height: that is, chloride concentrations decreased with increasing gage height and increased with decreasing gage height. Generally, chloride concentrations in the months of normally low streamflow, (October, November, and December), were greater than 100 mg/L. Higher chloride concentrations usually occurred during a period of a small rise in gage height. As there is a poor relationship between specific conductance and chloride concentration when the specific conductance of a sample is less than 100 µS/cm, chloride concentrations of 10 mg/L or less were omitted from the plot. Chloride concentrations were generally less than 100 mg/L from January to May and were less than 10 mg/L during periods of higher discharge (March, April, and May). Between April and September of 1964, chloride concentrations were greater than 100 mg/L, but were generally lower during periods of increased discharge.

Water-quality data collected during the study and data previously collected by the Mississippi Bureau of Geology indicate that the increased mineralization of the Chickasawhay River through the study area is caused, at least in part, by the inflow of highly mineralized water from tributaries draining oil fields (fig. 26). During the study period, the specific conductance of water ranged from 32 $\mu\text{S/cm}$ on Sandy Creek near Waynesboro (02477489), a stream whose drainage area contains only one known oil well, to 1,050 $\mu\text{S/cm}$ on Little Eucutta Creek near Eucutta (02477356), a stream draining an area of numerous oil wells.

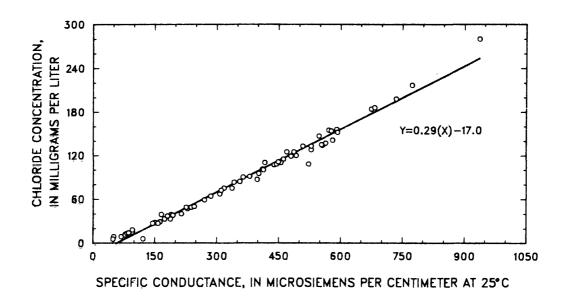


Figure 27,--Specific conductance versus chloride concentrations in the Chickasawhay River near Waynesboro (02477500), 1963-64.

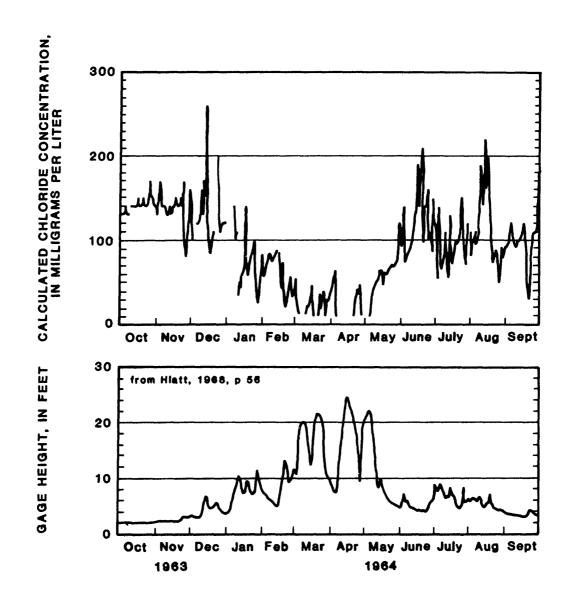


Figure 28.--Calculated chloride concentrations and gage height in the Chickasawhay River near Waynesboro (02477500), October 1963-64.

The quality of water the Sandy Creek is representative of the water in uncontaminated streams that drain outcrops of the Catahoula Sandstone. The water is soft (hardness as CaCO3, 8 mg/L), slightly acidic (pH of 5.9), and has a low dissolved-solids concentration indicated by a specific conductance of 32 $\mu\text{S/cm}$. Concentrations of major dissolved ions is less than 10 mg/L and the sodium to chloride ratio is 0.68. Minor elements, bromide (0.05 mg/L) and strontium (16 $\mu\text{g/L}$) are present in small concentrations.

The water in tributaries that drain oil fields is generally more mineralized, as indicated by greater specific conductance, than water in Sandy Creek. Samples collected at two streams in Clarke County, an unnamed creek near Harmony (024771605) and Castaffa Creek at Barnet (024773143), were more mineralized, having specific conductances of 390 and 205 $\mu\text{S/cm}$, respectively. At the unnamed Creek near Harmony, the sodium concentration was 39 mg/L and the chloride concentration was 100 mg/L, resulting in a sodium to chloride ratio of 0.39. On Castaffa Creek at Barnet, the sodium and chloride concentrations were 18 and 48 mg/L, respectively. Although Shubuta Creek near Shubuta (02477330) drains several oil fields, the water had a specific conductance of 85 $\mu\text{S/cm}$ and a chloride concentration less than 10 mg/L in 1982. The specific conductance of water on Shubuta Creek near Shubuta ranged from 44 to 65 $\mu\text{S/cm}$ in 10 samples collected during low flow in 1967.

Water in streams draining the Yellow Creek and Eucutta oil fields in Wayne County were relatively high in dissolved minerals. The specific conductance of three samples collected at Tampa Creek near Eucutta (024773553), Wagon Branch near Eucutta (024773556), and Little Eucutta Creek near Eucutta (02477356) in the Eucutta oil field ranged from 395 to 1,050 µS/cm, the chloride concentrations ranged from 110 to 300 mg/L, and sodium to chloride ratios from 0.44 to 0.50, respectively. Bromide concentrations were 2.55 and 2.18 mg/L and strontium concentrations were 1,400 and 1,800 μg/L on Tampa Creek and Wagon Branch, respectively. During a low-flow period in 1973, the Mississippi Bureau of Geology found that the specific conductance ranged from 80 to 7,000 µS/cm and chloride concentrations ranged from 23 to 2,545 mg/L in six streams in the Eucutta oil field (Baughman, and McCarty, 1974, p. 280). The specific conductance of two water samples collected at Silver Creek near Boyce (02477480) and Yellow Creek at Waynesboro (02477490) on streams draining Yellow Creek oil fields was 735 and 346 µS/cm, respectively, and the chloride concentrations were 210 and 87 mg/L, respectively. The sodium to chloride ratios were 0.57 and 0.48, respectively, for the samples collected at the sites on Silver and Yellow Creeks. The Mississippi Bureau of Geology found, during a low-flow period in 1973, that the specific conductance ranged from 170 to 1,100 $\mu\text{S/cm}$ and chloride concentrations ranged from 55 to 410 mg/L in six samples from streams flowing through Yellow Creek oil field (Baughman and McCarty, 1974, p. 280-281).

Two other Chickasawhay River tributaries that drain oil fields, Hortons Mill and Limestone Creeks, were more highly mineralized than Sandy Creek. The specific conductance was 510 $\mu\text{S/cm}$ at Hortons Mill Creek near Waynesboro (02477450) and 275 $\mu\text{S/cm}$ at Limestone Creek (02477453). The chloride concentration was 110 and 38 mg/L at these sites, respectively.

In August 1973, the specific conductance (2,500 μ S/cm) and chloride concentrations (930 mg/L) were significantly greater in Hortons Mill Creek than during the current study (Baughman and McCarty, 1974 p. 281).

During the study, water-quality samples were collected at four sites on tributaries of Buckatunna Creek. The dissolved-solids concentration in Long Beach at Chancellor (02477875) was high. The specific conductance of the water was 1,750 $\mu S/cm$, chloride concentration was 480 mg/L, and the sodium concentration was 200 mg/L. The sodium to chloride ratio was 0.42. Concentrations of bromide (4.7 mg/L) and strontium (3,600 $\mu g/L$) were high. In the three other streams, Hanging Moss Creek near Carmichael (02477910), Cypress Creek near Gretna (02477955), and Dry Creek near Gretna (02477965), the specific conductance ranged from 100 to 276 $\mu S/cm$ sodium concentrations ranged from 4.9 to 8.7 mg/L, and chloride concentrations were less than 20 mg/L.

The quality of shallow ground water in Chickasawhay Drainage basin is generally good. The dissolved-solids concentrations varied from aquifer to aquifer, ranging from extremely low concentrations (as indicated by a conductance of 60 $\mu\text{S/cm}$ in Wayne County well F91) in the Catahoula aquifer of the Miocene aquifer system to moderately-high (as indicated by a conductance of 700 $\mu\text{S/cm}$ in Clarke County well P55) in the Cockfield aquifer. Differences in chemical composition are readily apparent; sodium and bicarbonate are the predominant ions in both the Catahoula and Cockfield aquifers, whereas, calcium and bicarbonate ions predominate in the Vicksburg aquifer. Chloride concentrations generally were less than 20 mg/L (fig. 26).

The water from well F91 in Wayne County (fig. 26) is representative of the water quality of the Catahoula aquifer in the outcrop area. The water is soft (hardness as CaCO3 was 11 mg/L), acidic (pH of 4.9 units) and is low in dissolved-solids concentrations (as indicated by a specific conductance of 60 $\mu S/cm$). Concentrations of all major dissolved ions are less than 10 mg/L. Specific conductance of samples from numerous other wells completed in the Catahoula aquifer were low (less than 100 $\mu S/cm$) and chloride concentrations were less than 10 mg/L. However, a sample from well G135 in Wayne County had a specific conductance slightly higher (122 $\mu S/cm$) than well F91. The chloride concentration in the sample was 29 mg/L and the sodium to chloride ratios was 0.45.

Subareas A (East Yellow Creek) and B (Terrell Creek)

Samples from shallow wells screened in the Vicksburg aquifer in two areas, in north-central Wayne County near East Yellow Creek oil field and extreme southeastern Jasper County in Bryan oil field, were more mineralized than water from Jasper County well U28 (fig. 29). The water from well U28 is probably representative of the water in the shallow Vicksburg aquifer in Jasper County. The water is hard (hardness as CaCO3 is 122 mg/L), has a neutral pH (pH was 6.9 units) and has a moderate amount of dissolved soleds as indicated by a specific conductance of 274 μ S/cm. Calcium (47 mg/L) and bicarbonate (calculated to be 145 mg/L) are the predominant ions in solution.

The chloride concentrations were greater than 20 mg/L in wells H46 and H196 in East Yellow Creek oil field in Wayne County (fig. 30). All major ions in well H196 exceeded 10 mg/L and two minor ions, bromide (13 mg/L) and strontium (10,000 μ g/L) were present in large quantities. All major ions in samples from wells H46 and H196 (except magnesium in well H46) exceeded 10 mg/L. The bromide concentration was 1.07 mg/L in a sample from well H46. Chloride concentrations in well H11, located on the fringe of East Yellow Creek oil field, and from well H16, in the oil field, were less than 20 mg/L.

The chloride concentrations in samples from two springs in the Terrel Creek drainage (fig. 29) were 1,000 mg/L or greater, and was greater than 20 mg/L in one well in the northern part of Bryan oil field. In spring USO1, the bromide concentration was 8.80 mg/L and the strontium concentration was 7,600 $\mu g/L$. The sample from spring USO2 had a bromide concentration of 49 mg/L and a strontium concentration of 45,000 $\mu g/L$.

Summary and Conclusions

Generally, water in streams draining oil fields in study area 5 is more mineralized (chloride concentrations greater than 20 mg/L) than in streams draining areas of little or no oil production, indicating that many streams in area 5 are contaminated by oil-field brines. Numerous streams in the Chickasawhay drainage basin are contaminated as are streams draining into tributaries of the Leaf River. Inflow of contaminated shallow ground water is one source of contamination. Localized contamination of the Catahoula and Vicksburg aquifers was found in study area 5.

Descriptions of the ground— and surface—water sites in study area 5 are given in tables 20 and 21 and the results of analyses of samples collected at these sites are given in tables 22 and 23.

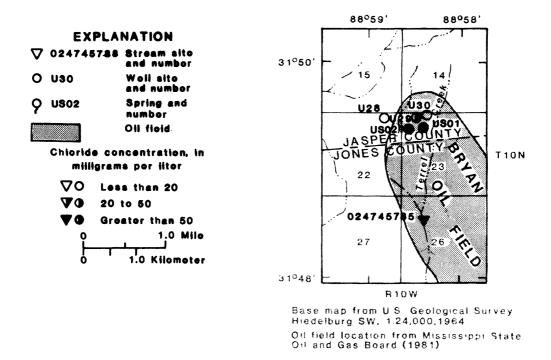


Figure 29.--Chloride concentrations at ground-water and surface-water sites in subarea B, 1981-82

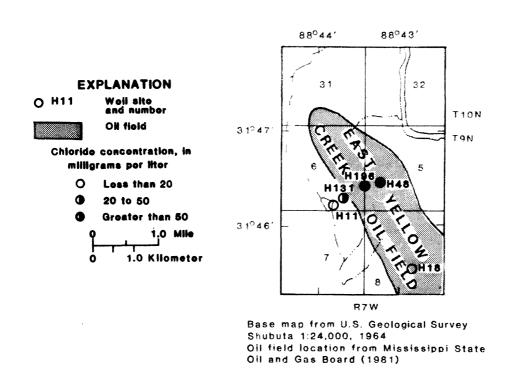


Figure 30.--Chloride concentrations at ground-water sites in subarea D, 1981-82.

Water-quality data from Chickasawhay River (02477000) upstream of most oil fields and Chickasawhay River (02477500) downstream of many oil fields in Wayne and Clarke Counties indicate that the river has been contaminated for several years in the study area. The dissolved solids concentration is consistently greater at the downstream site. concentrations generally were less than 10 mg/L at the upstream site and were generally greater than 20 mg/L at the downstream site. During the period October 1963 through September 1964, chloride concentrations at the upstream site ranged from less than 10 mg/L during periods of the greatest discharge to more than 100 mg/L during low-flow periods. appears that brines were entering Chickasawhay River throughout the 1-year period, although chloride concentrations were low during periods of high streamflow when daily samples were collected. During the study period, the water quality at the upstream site was not significantly different than at the downstream site; therefore, the amount of brines now entering the Chickasawhay River may be less than in previous years.

Although the water quality is not significantly different at the upstream and downstream sites on the Chickasawhay River, several streams flowing into the Chickasawhay River below the upstream site were found to be contaminated during the study. Chloride concentrations greater than 20 mg/L and sodium to chloride ratios similar to those for brines indicate that water in an unnamed stream near Harmony, and Castaffa Creek in Clarke County; and Horse Branch, Tampa, Little Eucutta, Silver, Yellow, Hortons Mill, and Limestone Creeks in Wayne County are contaminated. Higher bromide and strontium concentrations than in Sandy Creek tend to confirm that brines enter Wagon Branch, Little Eucutta, Hortons Mill, and Silver Creeks.

Some contaminants in Silver Creek may originate from the inflow of contaminated shallow ground water. Well Gl35 located in the vicinity of Yellow Creek oil field yielded water that contained a greater than normal chloride concentration (29 mg/L). Thus, to some extent, the contaminated shallow ground water present in this area may be entering Silver Creek through seeps and springs.

Four streams in the Bogue Homa (a Leaf River tributary) drainage basin were found to be contaminated during the study. The chloride concentrations were greater than 20 mg/L in all streams. The presence of an industrial facility located immediately upstream of site Old Julie Branch (024745735) and a sodium to chloride ratio greater than 0.65 suggests that the increased mineralization of water at the site is probably not directly caused by oil-field brines. Increased mineralization of Terrell Creek is caused, at least in part, by inflow of highly-contaminated water issuing from a spring. Field personnel observed discharge from Jasper County spring USO2 and water well U29 were also contaminated and chloride concentrations greater than 20 mg/L. Water from two nearby uncontaminated wells (chloride concentration less than 10 mg/L) indicate that contamination of shallow ground water is not widespread in the northern part of Bryan oil field.

Two streams in the Tallahala Creek drainage basin were contaminated. Tallahala Creek (02473480) and Horse Branch (02473477) contained chloride concentrations greater than 20 mg/L. The water samples from an unnamed stream (02473810) that flows through Bay Springs oil field and Plant Branch near Soso (02472058) had chloride concentrations of 61 and 27 mg/L, respectively.

SUGGESTIONS FOR ADDITIONAL STUDY

Water-quality data collected during and prior to the study show that areas of contaminated ground water are present in the oil and gas producing areas of Mississippi that were investigated. Contaminated ground water is a problem to well owners and it needs to be determined whether the area is large or small or whether it affects a few or many people; however, some contaminated areas are of immediate concern. Before remedial action can be taken, additional data may be needed to better define the geohydrology of an area, to delineate the full extent of brine contamination, and to establish the direction and rate of movement before individuals, municipalities, and industries can implement plans to protect aquifers for present and future water supplies.

The criteria used to assign priorities for more detailed studies of contaminated areas are:

- The population affected or potentially affected by brine contamination. This consideration is both a function of the size of the contaminated area and population density in the area.
- (2) The proximity of the contaminated areas to nearby cities and communities that are dependent on ground-water supplies.

Listed below are the areas that meet the criteria for more detailed studies.

Tinsley oil field—Data indicate that the shallow Citronelle aquifer and the deeper Sparta aquifer are contaminated in large parts of the oil field. Individuals living in the area reported that shallow wells were abandoned and subsequently destroyed when the water became too salty to use. Contamination of two aquifers in this area limits the availability of freshwater; therefore, there is a need for a geohydrologic study to determine the extent, direction, and rate of movement of contamination.

Adams County—Although ground water in deep aquifers in Adams County was not found to be contaminated, there are numerous areas where shallow wells and streams are contaminated. Furthermore, contaminated water in streams during low flow suggests that additional areas not identified may be contaminated. Most domestic, municipal, and industrial water in Adams County is supplied by wells screened in the deeper (400-900 ft) Miocene aquifers; however, several community water systems obtain water from wells that are less than 300 ft deep. Contamination in the shallow aquifers poses a threat to deeper aquifers where aquifers are hydraulically connected. At present, oil-field brines are posing a problem to industries withdrawing water from the Mississippi River valley alluvial aquifer.

Brookhaven oil field—This field includes the largest area of contaminated ground water found during this study. The Citronelle aquifer is contaminated in at least a 10 mi² area in the Brookhaven subarea. The inhabitants in this area commonly obtain water from shallow wells screened in the Citronelle Formation. A hydrologic connection may exist between the Citronelle aquifer and underlying shallow Miocene aquifers. If so, contaminated water migrating to the relatively shallow Miocene aquifer can pose a threat to wells tapping this aquifer for water supply.

<u>Baxterville oil field.</u>—Parts of the Citronelle aquifer are contaminated in the vicinity of the oil field. Migration of brine in the Citronelle aquifer can endanger the water supply of this area.

Pistol Ridge oil field—Several generally small areas of the Citronelle aquifer in the oil field are contaminated. Higher than normal chloride concentrations in small streams suggests that other areas are also contaminated. Inhabitants in this area commonly depend upon the Citronelle aquifer for their water supplies. The geohydrology of the area needs to be studies to delineate the extent, direction, and rate of movement of the contamination.

Other subareas——In several other areas, shallow ground water was found to be contaminated. Ground—water contamination was found in the Little Creek area in Pike County, East Yellow Creek oil field in Wayne County, Mars Hill area in Amith County, Cannonsburg area in Jefferson County, and near Knoxville in Franklin County. Numerous streams draining oil fields were contaminated at low flow, indicating additional areas of potential contamination that may require further study in the future.

Additional geohydrologic data are needed to determine if a brine-contamination problem, or potential problem, exists in the McComb oil field. Two wells in the Citronelle aquifer near McComb were contaminated. If the Citronelle and Miocene aquifers are hydrologically connected, migration of contaminated water into the Miocene aquifer could pose a threat to water supplies depending on this aquifer.

In summary, either surface or ground water (or both) are contaminated, to some extent, in every oil field where data were collected. Water supplies in other oil fields outside the five study areas are likely contaminated to some extent. Water-quality studies are needed in oil-producing areas to define extent and degree of contamination by oil field brines in water to plan for future water supplies and as an early warning of possible ground-water degradation.

SELECTED REFERENCES

- Baughman, W. T., and McCarty, J. E., 1974, Water resources of Wayne county, in May, J. H., and others, Wayne county geology and mineral resources: Mississippi Geological, Economic and Topographical Survey Bulletin 177, 293 p.
- Bicker, A. R., Jr., 1972, Saltwater disposal wells in Mississippi: Mississippi Geological, Economic and Topographical Survey Information Series MGS-72-4, 92 p.
- Callahan, J. A., Skelton, John, Everett, D. E., and Harvey, E. J., 1964 Available water for industry in Adams, Claiborne, Jefferson, and Warren Counties, Mississippi: Mississippi Industrial and Technological Research Commission Bulletin 64-1, 45 p.
- Carpenter, A. B., Trout, M. W., and Pickett, E. E., 1974, Preliminary report on the origin and chemical evolution of lead and zinc-rich oil field brines in central Mississippi: Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 69, no. 8, p. 1191-1205.
- Childress, S. W., Bograd, Michael, and Marble, J. C., 1976, Geology and man in Adams County Mississippi: Mississippi Geological, Economic and Topographical Survey, 188 p.
- Collins, G. A., Zelinski, W. P., and Pearson, C. A., 1966, Bromide and iodide in oil field brines in some tertiary and cretaceous formations in Mississippi and Alabama: U.S. Department of the Interior Bureau of mines Report of Investigations No. 6959, 27 p.
- Cross, R. D., and Wales, R. W., 1974, Atlas of Mississippi: Jackson University Press of Mississippi. 187 p.
- Dalsin, G. J., 1972, Saline ground-water resources of Mississippi: Mississippi Board of Water Commissioners Water Resources Map 72-1, 1 sheet.
- Davis, S. N., and DeWiest, R. J. M., 1966, Hydrogeology: New York, John Wiley and Sons, 463 p.
- Feth, J. H., 1981, Chloride in natural continental water -- a review: U.S. Geological Survey Water Supply Paper 2176, 30 p.
- Fryberger, J. S., 1975, Investigation and rehabilitation of a brine contaminated aquifer: Groundwater: Journal of National Water Well Association, Vol. 13, No. 2, p. 155-160.

- Gandl, L. A., and Spiers, C. A., 1980, Results of water-quality sampling near Richton, Cypress Creek, and Lampton salt domes, Mississippi: U.S. Geological Survey Open-File Report 80-443, 18 p.
- Hawkins, M. E., Jones, O. W., and Pearson, C., 1963, Analysis of brines from oil-productive formations in Mississippi and Alabama: U.S. Bureau of Mines Report of Investigations 6167, 22 p.
- Hendrickson, G. E., and Krieger, R. A., 1964, Geochemistry of natural water of the Blue Grass Region, Kentucky: U.S. Geological Survey Water Supply Paper 1700, 135 p.
- Hiatt, W. E., 1968, Daily river stages: Weather Bureau, vol. 60, 1964, 163 p.
- Kalkhoff, S. J., 1982, Specific conductance and dissolved chloride concentrations of freshwater aquifers and streams in petroleum producing areas in Mississippi: U.S. Geological Survey Open-File Report 82-353, 33 p.
- Leonard, A. R., and Ward, P. E., 1962, Use of NaCl ratios to distinguish oil-field from from salt-spring brines in western Oklahoma in Short Papers in Geology, Hydrology, and Topography, Articles 1-59: U.S. Geological Survey Professional Paper 450-B, p. Bl26-Bl27.
- Mississippi Oil and Gas Board, 1976, Oil and gas map of Mississippi.
- ____1981, Mississippi oil and gas production annual report: 371 p.
- Shows, T. N., Broussard, W. L., Humphreys, C. P., Jr., Water for industrial development in Forrest, Greene, Jones, Perry, and Wayne Counties, Mississippi: Mississippi Research and Development Center, 72 p.
- Tharpe, E. J., 1975, Low-flow characteristics of Mississippi streams: Mississippi Board of Water Commissioners Bulletin 75-1, 60 p.
- U.S. Geological Survey, 1966-1982, Water resources data for Mississippi, Water Years 1965-81: U.S. Geological Survey water-data reports, (published annually).

HYDROLOGIC DATA

Table 8.--Location and drainage area of surface-water sites in area 2

	Site		Loca	tion	Drainage
County	Number	Station Name	Lat	Long	Area(ml2)
Adams	07290893	St. Catherine Creek at Washington, MS	313452	0911736	
Adams	07290915	St. Catherine Creek at Linwood, MS	313104	0912433	
Adams	07293480	Pretty Creek nr Kingston, MS	312227	0911240	
Adams	07293490	Sandy Creek nr Kingston, MS	312235	0911441	
Adams	07294000	Second Creek at Sibley, MS	312325	0912346	55.3
Adams	07294500	Homochitto River nr Doloroso, MS.	311953	0912137	1120
Amite	07292180	Brushy Creek nr Bunkley, MS	312004	0905904	40.4
Franklin	07291000	Homochitto River at Eddiceton, MS	313010	0904635	180
Franklin	07291750	Middle Fork Homochitto River at Meadville	312805	0905432	156
Franklin	07292200	Richardson Creek nr Bunkley, MS	312146	0910120	16.2
Franklin	07293250	Wells Creek nr Garden City, MS	312204	0910855	79.1
Franklin	07291748	Tom Branch nr Meadville, MS	313117	0905538	
Jefferson	07290840	South Fork Coles Creek nr Cannonsburg	313833	0911058	40.6
Jefferson	07290850	Folkes Creek nr Cannonsburg, MS	313849	0910933	31.0
Jefferson	07290860	South Fork Coles Creek nr Fayette, MS	314450	0911050	107
Wilkinson	07292500	Homochitto River at Rosetta, MS	311920	0910620	750
Wilkinson	07292460	Foster Creek nr Crosby, MS	311730	0910452	31.1
Wilkinson	07293498	Crooked Creek nr Doloroso, MS	312107	0911456	

Table 9.--Records of wells in area 2

							Alti-	Well	Water
County	Well No.	Station ID.	Owner	Sec.	Location	я.	tude (ft)	depth (ft)	bearing Unit
Adams	A005	314321091194701	Chester Hoover	13	N 60	02W	85	265	122CTHL
Adams	BS01	313857091222665	Ansley Spring	8	ď	3	100	1 4	112TBC6
Adams	8025	313711091135301	J.T. Marsh	8	8 8 8	01W	360	262	122CTHL
Adams Adams	B026 D019	313958091200201 3134000 9 1210003	Lamar Felter Oakland Wtr Wks	NWNW30 57	08N 07N	M M 05M	270 160	200 135	122CTHL 122MOCN
Adams	0033	313348091163501	T.L. James	NWNW47	07N	₹	340	447	122MOCN
Adams	0055	313538091202001	R.L. Hensley	ઇ	07N	MZ 02₩	190	170	122CTHL
Adams	9200	313415091192001	Rayborn Drilling	51	0 N	M 20	215	165	122CTHL
Adams	202	313502091174601 313449091204801	St. Catherine Gravel R. Wilson	8 33	0 C	* * * * * * * * * * * * * * * * * * *	195 205		122CTHL 122MOCN
Adams	F013	312946091253401	Int Paper #13	SENW14	06N	03W	22	213	112MRVA
Adams	F014	312934091252701	Paper '	NWSE14	06N	03W	52	220	112MRVA
Adams	F015	312922091252301	Int Paper #15	SENWIZO SENF 14	2 S	M 20 0 3 M	<u> </u>	212	112MRVA
Adams	F017	312903091250001	Pared	A 14 14 14 14 14 14 14 14 14 14 14 14 14	2 2	3 6	0 (2	220	112MRVA
Adams	F018	312853091253201	Paper	NE SE 20	06N	03.W	32	235	112MRVA
Adams	F020	312833091253401		19	0 9 N	03W	100	253	122MDCN
Adams	F021	312924091255201	Int Paper #21A	SWNE 14	08N	03W	ድኔ	215	112MRVA
Adams	F023	312754091254801	Int Paper #23	SWSW19	2 Z 9 0	3 60	8 52	250 250	122MDCN
Adams	F076	313050091243801	Cath	NWNW07	06N	03W	107	65	122MOCN
Adams	F082	313000091252301	Floyd McCalip				160	266	122MOCN
Adams	787	\$128080\$1250601	Mead Hufford				270	0,1	IZZMOCN
Adams	F094	312630091225901	Int Paper Research	43	06N	03W	170	260	122MOCN
Adams	F101	312825091253801	Int Paper #21	51	08N	M50	85	234	112MRVA
Adams	F102	312739091254901		8	06N	03W	90	259	112MRVA
Adams	6007	312730091200602	Adams Co. W A	41	0 0 N	₹ ₹	220 220	267 267	122HBRG 122HBRG
Adams	6103	312751091202601	Adams Co. W. A	41	8 8 8 8	¥ 88	245	140	122MOCN
Adams	0021	312752091202201	Adams Co. W A	41	06N	02W	223	880	122M0CN
Adams Adams	G028 H016	313014091164201 312820091121101	Luther Davis J. Willard	24 45	06N 06N	02W 01W	270 195	165 75	122MOCN 122MOCN
					`				

Table 9.--Records of wells in area 2--Continued

County	well No.	Station ID.	Owner	Loc Sec.	Location	<u>ب</u>	Alti- tude (ft)	Well depth (ft)	Water bearing Unit
Adams Adams Adams Adams Adams Adams	H017 H020 H021 J006 J026 J031	312823091120801 312812091123601 312745091120001 312248091231201 312323091244001 312520091243701	J. M. Thomas T. Hazel J. Carter Jerome Arnold Johnie Brown Pierce-Butler	45 45 45 NWNW23 NWSE09	05N N N 06N 05N 05N 05N 05N 05N 05N 05N 05N 05N 05	01W 01W 03W 03W	205 180 215 140 215 260	160 100 120 125 214 210	122MOCN 122MOCN 122MOCN 122MOCN 122MOCN 122MOCN
Adams Adams Adams Adams Adams	602 1805 1805 1805 1805	312402091161401 312346091163401 312340091162801 312230091112465 312220091114965	E. L. Salmon F. E. Howard William Macilwain Fox Spring Mill Pasture Spring	15 15 20 28	05N 05N 05N 05N	02W 02W 01W 01W	480 82 450 110	160 160 160	122MOCN 122MOCN 122MOCN
Adams Adams Adams Adams Adams Adams	LS03 L004 L005 L018 L019 L020	312223091114365 312410091152901 312526091145701 312418091111101 31230301151801	Deerfield Spring Jerry Walters Glen Stenson U.S. Forest Service L. Green Clyde Williams	20 27 27 28 29 24	05N 05N 05N 05N 05N	01W 01W 01W 01W	110 85 380 270 100 130	165 200 200 35 100	122MOCN 122MOCN 122MOCN 122MOCN
Franklin Franklin Franklin	L015 L021 L022	312215091063001 312312091053901 312440091063101	H. D. Shell J. Havard J. C. Graves	NENE40 SENE33 SWSE17	05N 05N 05N	01% 01E 01E	160 210 175	151 104 100	122MOCN 122MOCN 122MOCN
Jefferson Jefferson Jefferson	M001 M003 N002 N008	314110091112001 313833091094701 313900091051901 313933091080101	Natchez Trace Park Mrs. L. Price Mrs. J. Logan Jr. Willie Simon	33 34 8 33 34 8 34 8 36 8 37 8 38 8 38 8 38 8 38 8 38 8 38 8 38	08N 08N 01N	01W 01W 01E 10E	140 200 190 290	444 274 100 167	122MOCN 122MOCN 122MOCN 122CTHL
Wilkinson Wilkinson	B002 C020	311819091210901 311428091190401	McCarstle Dave Carter	25 15	04N 03N	02W	120	110	122MOCN 112TRCS

112MRVA-Mississippi River Alluvial Aquifer 112TRCS-Terrace Deposits 122CTHL-Catahoula Sandstone 122HBRG-Hattiesburg Formation 122MGCN-Miocene Series

(Dissolved constituents and hardness in milligrams per liter, except as indicated) Table 10.--Chemical analyses of surface-water sites in area 2

Stron- tium (Sr) (µg/L)	11	ļ	1 1 9	<u> </u>	Q	!	!	1	!	18	!!	ı.	!!	! !	. 9	5 i	!	!	
Str (Sr (mg		1	' ';	1.9	7	•	' 1	'	•	' K	, 1	,	, '	' '	•	≒ '	,	1 1	' '
Boron (B) (µg/L)		;	; ; ;	2 8	140	ļ		ł	ł	160	1 1	;			,	₹ ¦	ŀ	: :	1 1
Bromide (Br)		1	1 1	60.10 0.29	1.50	;		1	;	0.28	11	i	1 1	1 1		77.0	;	1 1	
Chlo- ride (C1)		5.5	9.9	6.2 320	620	8 3	\$ %	17	155	300 300 300	22	171	406 178	55 55	` 8	S &	19	3 88	153
Sul- fate (SO ₄)		11	8.0	7.0	3.0	• •	4.0	1	1	2.0	2.2	2.4	5 4.	1 1		2.2	9.0	1.2	0.8
Sodium (Na)		7.4	4.4	8.7 160	<u>8</u> ;	ر د د	X	37	ł	160	Z 4	106	109		} !	4 4	38	41 126	95 51
Mag- nesi- um (Mg)		14	12:	4 8	29	7.7	2:1	4.3	1	6.1	9.7	8.8	19	1 1	١ ;	1.7	2.0	1.4	3.1
Cal- cium (Ca)	ıty	* \$	* * 1	82	29 5	1 5	3 7	6	1	5 7 7 8 7 8	25 25	32	72 47	;	;	٠ ۲	8.4	6.6 20	13
Hard- ness as CaCo ₃	Adams County	148	161	153 307	237	3	3 %	40	1	182	102	116	152 121	1 2	101	<u>4</u> %	18	22	45
Temper- ature (Deg°C)	Ada	1 4	13.5	25.0 29.0	21.5	20.0		17.5	27.0	12.0 23.5	5.5 -	ł	1 1	24.0	0 1	26.5	ļ	29.0	1 1
pH (Units)		7.7	8.5	8.1 8.5	6.2	0.0	5.9	6.9	7.1	6.9	7.2	7.2	 	7.6	; I	/•/	6.3	6.5	6.3
Spe- cific con- duct- ance (µS/cm)(28	328	320 1350	2040	727	266	289	200	000 000 000	462 272	092	1510 775	320 325		490 271	272	264 736	567 317
Stream- flow (ft ³ /s)		1 6	0.98	2.9	5.6			1	!	11.0		1	7.1	1 1	}	17.U	}		11
Time (Hours)		55.55	0710	1100	1130	0771		1440		0745	1145					1045		1130	
Date of col- lec- tion (09/01/61	11/08/62	07/16/82 07/16/82	08/25/82	19/10/60	08/30/62	11/0//62	10/08/75	12/03/75 08/26/82	09/0//61 10/24/61	08/30/62	11/07/62	27/70/01 27/20/01	01/00/21	06/26/82	08/14/61	09/07/61 10/10/61	10/24/61 08/30/62
Site		07290893	07290893	07290893	07293480	0646670	07293490	07293490	*07293490	*07293490 07293490	07294000	07294000	07294000	*07294000		07294500	07294500	07294500	07294500

(Dissolved constituents and hardness in milligrams per liter, except as indicated) Table 10.--Chemical analyses of surface-water sites in area 2 --Continued

Stron- tium (Sr) (µg/L)		26		88 950	130 250		11111	 190	1111	1111	1	1221
Boron (B) (µg/L)		10		20 <10	60 150		1111	11113	1111	11111		1 40
Bromide (Br)		0.02		0.23	0.08		11111		1111	11111		0.06
Chlo- ride (Cl)		0.9		21 690 63	28 180		362 210 259 699 1320	700 600 882 530 100	400 232 231 334	412 648 630 520 65		9.1 16 15
Sul- fate (SO ₄)		3.0		20.0	2.0		8.0 2.6 1.8 7.8	0.6 6.8 4.2 3.0	3.8 3.6 3.8 0.6	3.2 3.2 5.8 1.4 3.0		3.0
Sodium (Na)		4.0		12.0 350 38	\$ 23.X		200 108 138 432 764	389 352 515 292 67	221 128 125 186	236 370 354 281 43		7.2 9.9 10
Mag- nesi- um (Mg)		1.0		1.1	1.9		12 8.6 12 9.9	14 15 18 16 8.8	23 11 6.5 16	15 11 21 18 9.5		1.3
Cal- cium (Ca)	ıty	2.8	ounty	3.8 59 5.4	5.7	County	32 22 22 22 22 22 23 23 23 23 23 23 23 2	51 49 59 43 21	47 26 23 44	52 58 50 22	unty	3.6
Hard- ness as CaCo ₃	Amite County	11	Franklin County	230	672	Son Cc	138 98 130 133 260	187 184 221 172 89	212 110 84 176	192 190 226 199 94	Son Co	14 14 36
Temper- ature (Deg°C)	Amit	31.0	Frank	31.0	27.5	Jeffer	1,111	16.5 13.5 29.0	30.0	 14.0 28.0	Wilkir	28.0 33.5 35.5
Spe- cific con- duct- ance pH (µS/cm)(Units)		8*9		7.4	6.4		7.0 7.1 7.0 7.0 6.8	7.0 6.7 7.7 6.7	7.2 6.9 6.9 7.2	7.1 7.0 7.5 7.3		7.1 7.3 6.8
Spe- cific con- duct- ance (µS/cm		48		95 2450 258	238		1370 754 962 2440 4150	2400 2060 2820 1780 521	1560 894 837 1270	1510 2270 2270 1890 400		70 92 131
Stream- flow (ft3/s)		24.0		53.0	0.85		3.49	3.67	10.6	10.0		8.30 244 0.59
Time (Hours)		1430		1400	1330		1415	1300	1500	0915 1120		1530 1730 1500
Date of col- lec- tion (07/15/82		08/31/82 07/15/82	08/24/82		06/01/61 09/07/61 10/25/61 08/08/62 09/12/62	10/24/62 11/07/62 11/08/62 01/02/63 07/14/82	06/02/61 08/15/61 09/07/61 10/11/61	11/02/61 08/29/62 09/25/62 11/08/62 07/14/82		08/24/82 08/24/82 08/26/82
Site		07292180		07291000	0 72922 00 0 729 3250		07290840 07290840 07290840 07290840 07290840	07290840 07290840 07290840 07290840	07290860 07290860 07290860 07290860	07290860 07290860 07290860 07290860		07292460 07292500 07293498

* Sample collected by Mississippi Geological Survey and analyzed by the Mississippi State Board of Health

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 11.--Chemical analyses of ground water in area 2

	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -											
of cific Water col- con- bearing Well lec- duct- Temper- unit depth tion ance pH ature (ft) (µS/cm) (Units) (Deg°C)	pH (Units)		1.00	Hard ness as CaCo ₃	Cal cium (Ca)	Mag nesi- um (Mg)	Sodium (Na)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Bromide (Br)	Boron (B) (ug/L)	Stron- tium (Sr) (wg/L)
			₹	Adams Lounty	uncy							
099	;	i		i	;	;	i	;	8.0	1	ł	;
265 09/15/81 660	1			13	1 :	1:	1 6	1 8	8.0	1	ł	;
05/14/82 4590	; ;	ii		476	חוו	1 1	089	8	1200 3 5	1 1	1 1	
262 09/21/81 435	;	,		1	. :	;	1	1	5.0	1	: 1	;
200 09/15/81 760	;	1		1	; !	; ;	,	1	5.5	ł	;	;
1 135 06/14/82 600	;	ł		;	19	ž	9.1	4. 0	9.0	;	;	;
120 09/16/81 460	;	;		ł	;	;	!	ł	7.0	ł	:	;
09/15/81 550	: :	1 1		1 1	! !	1 1	! !	! !			: :	1 1
. 90 09/18/81 520	ł	ł		!	;	}	1	1	6.5	!	;	;
	6.9	20.0	0	340	78	35	12	8.0	11	!	1	;
04/27/81 1/50	1	ا و	u	100	1 1	1 6	1 4	1 2	47.5	1 3	¦	1 2
220 09/22/81 860	o !	;	`	ş ¦	}	₹ ;	2	₄ !	2 &	; ;	₹ ;	07 !
220 04/27/82 910 6.8	8.9	19.	2	386	87	41	67	II	81	ł	ł	;
09/22/81 650	1	i		ł	;	!	1	!	32	1	}	1
650 6.9	6.9	16	Ŋ	293	89	30	17	10	35	;	;	;
180 09/22/81 1020	!	i		}	;	;	;	ł	100	ł	;	1
900 7.2	7.2	19.	0	396	96	38	53	27	26	;	;	i
220 04/27/82 900 7.3	7.3	19.	ιĄ	344	80	32	53	51	28			
09/22/81 1400	;	1		1	1	;	;	1	240	ł	;	;
235 04/27/82 1390 6.9	6.9	19.0	_	415	100	40	93	2.0	105	0.27	40	280
253 09/22/81 980	10	1 2	,	375	1 0	15	1	۱ و	£ 5	1 2	5	1 2
650	٠ ا		_	ÇQ	6	۲ ۱	٦ ١	0	3 8	e: :	} ¦	DAT
								,	į '			
215 04/28/82 900	1	19.		484	108	22	23	7	K >	;	1	1
04/27/82 580 7.0	7.0	- 6	2	286	1 53	Ç	1 2	ء ا	ور 6	0.10	: Q	160
250 09/22/81 676	;	;		;	: 1	;	1	;	54	' ;	;	
800 7.0	7.0	20.	0	356	8	38	22	0.9	35°	!	!	!
62 UZ/ 14/ 61 6UU	! 1	,	,	;	;	!	;	;	6	;	;	!

Table 11.--Chemical analyses of ground water in area 2--Continued

(Dissolved constituents and hardness given in milligrams per liter, except as indicated)

Stron- tium (Sr) (ug/L)			220			121111	 1400
Boron (B) (µg/L)		1111	18111	111111	11111	131111	11118
Bromide (Br)		11111	0.21	111111	11111	0.01	1 - 1 - 96.0
Chlo- ride (Cl)		97 6.2 2.2 6.5 5.1	110 110 16 69 30	24 9.0 470 32 330 1200	10 3.3 210 220 98	250 6.6 4.5 4.1 3.4 6.0	20 30 15 95 99
Sul- fate (SO ₄)		#	58 130	2.0	3.0	2.0	1.0
Sodium (Na)		91111	14	19 8.6 11 500 1	120	7.5	620
Mag nesi- um (Mg)	(panu	81111	1881261	41 7.1 141 17 70 264	4 ! ! 6 ! 6 . 5 !	11.11.13	1.2
Cal clum (Ca)	(Continued)	2	18181	105 17 100 24 24 190 608	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 1 8	11.
Hard ness as CaCo ₃	Adams County	321	330	431 73 130 680 2600	51 14 1	151	11128
Temper- ature (Deg ^o C)	Adams	21.0	19.5 19.0 19.0	20.0	20.0	19.5 	20.0 22.0 21.0 22.5
pH (Units)		8:1111	7.1	5.9 5.9 6.7 6.0	6.4	5.7	 5.8 5.0
Spe- cific con- duct- ance (µS/cm)		900 470 450 520 490	950 950 690 655 887	900	430 760 730 550	925 78 67 310 380 475	360 100 360 314 3190
Date of col-		04/27/82 09/17/81 09/17/81 09/14/81 09/14/81	09/22/81 04/27/82 09/22/81 04/27/82 09/22/81	04/28/82 10/13/69 07/20/73 07/20/73 02/19/74 03/01/74	02/15/74 09/17/81 09/16/81 04/26/82 09/16/81	04/26/82 05/21/82 05/20/82 09/23/81 09/17/81	09/16/63 09/16/63 09/16/63 08/25/82 08/25/82
Well depth (ft)		65 266 170 169 260	226 234 234 259	259 (267) 267 (267) 267 (267) 267 (267) 140	880 (1922) 165 (1922) 155 (1922) 160 (1922)	160 100 120 125 214 210	480 450 1
Water bearing unit		122MOCN 122MOCN 122MOCN 122CTHL 122CTHL	112MRVA 112MRVA 112MRVA 112MRVA 112MRVA	112MRVA 122HBRG 122HBRG 122HBRG 122HBRG 122HBRG	122MDCN 122MDCN 122MOCN 122MOCN 122MOCN	122MOCN 122MOCN 122MOCN 122MOCN 122MOCN 122MOCN	122MDCN 122MDCN 122MOCN
well Number		F076 F082 F085 F086	F100 F100 F101 F101	F102 *G007 *G007 *G008 *G008 G008	*G021 G028 H016 H016 H017	H017 H020 H021 J006 J026 J036	K002 K004 K005 LS01 LS02

Table 11.--Chemical analyses of ground water in area 2--Continued

(Dissolved constituents and hardness given in milligrams per liter, except as indicated)

- E (기	1		8		
Strontium (Sr) (Mg/L)		210			
Boron (B) (ug/L)	11111	110	1 1 0	1811	
Bromide (Br)	11111	0.15	3.74	1111	11
Chlo- ride (Cl)	170 2850 10 6.5	88 2.6	24 35 3900	13 707 5.8 6.5	29 8.2
Sul- fate (SO ₄)	0.5	1.0	8.0 7.0 70	14 0.2	
Sodium (Na)	8 1 1 1 1	32	9.9 18 1200	446	11
Mag nesi- um (Mg)	3.1	8.9	2.4 3.2 180	21 6.8	
Cal cium (Ca)	22.0 34 8.6 3 20.0	26	8.6 9.6 1000	County 44 18 	County
Hard ness as CaCo ₃	4	102	Franklin County 31 8.6 37 9.6 3245 1000	Jefferson County 44 0 73 18	Wilkinson County
Temper- ature (Deg°C)	22.0 20.0 	23.0	 22.0 21.5	Jef 19.0 	Wil
pH (Units)	6.2	5.4	5.5	 6.9	
ope- cific con- duct- ance (µS/cm)	615 5000 320 230 420	414 36	105 195 11800	660 2630 190 260	780
of col- lec- tion	08/25/82 09/16/63 09/16/63 09/16/81 09/16/81	08/26/82	05/18/82 05/18/82 05/18/82	09/22/81 07/16/62 10/24/62 09/21/81	09/17/81
Well depth (ft)	380 (35)	35 (151 (104 (100 (444 (274 (100)	110 (221 (
Water bearing unit	122MDCN 122MOCN 122MOCN	122MOCN 122MOCN	122MOCN 122MOCN 122MOCN	122MOCN 122MOCN 122MOCN 122CTHL	122MOCN 112TRCS
well Number	LS03 L004 L005 L018 L019	L020	L015 L021 L022	M001 M003 N002 N008	B002 G020

¹¹²MRVA-Mississippi River Alluvial Aquifer
112TRCS-Terrace Deposits
122CTH.-Catahoula Sandstone
122HBRG-Hattiesburg Formation
122MOCN-Miocene Series
* Analysis by Mississippi State Board of Health

Table 12.--Location and drainage area of surface-water sampling sites in area 3

Site		Loca	tion	Drainage
Number	Station Name	Lat	Long	Area (mi ²
	Amite County			
07376640	East Fork Amite River at Mars Hill, MS	311825	0903803	39.1
	·			
	Franklin County			
07291248	Hurricane Creek nr Lucien. MS	313000	0903803	
07271240	Hullicane creek in Lucien, Po	717000	0707007	
	Lincoln County			
	Lincoln councy			
02490250	Boque Chitto nr Brookhaven, MS	313240	0902836	28.3
02490260	East Boque Chitto nr Brookhaven, MS	313319		18.6
02490289	Jordan Čreek nr Enterprise, MS	312934	0902515	11.6
02490290	Boone Creek nr Bogue Chitto, MS	312804	0902553	30.5
02490300	Big Creek at Bogue Chitto, MS	312646	0902724	55.1
00100750		7100/0	222212	
02490350	Allbritton Creek or Bogue Chitto, MS	312249		6.40 8.12
02490415	Little Creek or Ruth, MS	312109	0902101 0903308	13.8
07291230	Shaws Creek nr Red Star, MS	313558	0903300	17.0
	Pike County			
				
02490357	Boque Chitto nr Johnstons Station, MS	312011	0902603	212
024903594	Lazy Creek nr Johnstons Station, MS	312035	0902355	8.27
02490370	Boque Chitto nr Pricedale, MS	311610	0902140	261

Table 13.--Records of wells in area 3

Well Number	Station Number	Owner	Loc Sec.	ation T.	R.	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit *
		Amite	County					
E082	311829090372601	L. Wilkinson	SWSE17	04 N	06E	422	60	121CRNL
E083	311823090372201	G. Smith	SWSE17	04 N	06E	430	133	121CRNL
E084	311825090371001	E. Clark	SESE17	04 N	06E	428	100	121CRNL
E085	311747090350901	H. Cooper	NESE21	04 N	06E	405	80	121CRNL
E086	311843090365501	MRS. J.D. Davis	NWSW16	04 N	06E	440	85	121CRNL
E087	311823090372202	G. Smith Zack Allard L.P. McCurley Mrs. I. Young Paul Dyke Sr.	SWSE17	04 N	06E	430	57	121CRNL
E088	311835090363001		NESW16	04 N	06E	445	85	121CRNL
E089	311608090350201		NESE34	04 N	06E	438	100	121CRNL
E090	311837090371001		NESE17	04 N	06E	444	100	121CRNL
E091	311802090361201		SWNE21	04 N	06E	415	80	121CRNL
E092	311623090355401	Myra Alford	NWNW34	04N	06E	415	85	121 CRNL
E093	311616090364101	J.F. Edwards	SENW33	04N	06E	443	80	121 CRNL
E094	311607090345601	Jewell McKnight	NESE34	04N	06E	442	55	121 CRNL
E095	311912090365501	E.H. Mitchel	NWNW16	04N	06E	435	80	121 CRNL
		Lincoln	County					
G056	313344090312401	U. L. Day	SENW20	07N	07E	500	81	121CRNL
G057	313350090314201	S. McFadde	SWNW20	07N	07E	495	100	121CRNL
G058	313512090314701	H. Case	NWSW08	07N	07E	492	80	121CRNL
G059	313523090311601	Elvin Smith	NWSE08	07N	07E	495	80	121CRNL
G060	313540090320401	C. Case	NENE07	07N	07E	450	100	121CRNL
G061	313542090315301	J. Case Jr. J. Case Jr. C. A. Watts Aaron Acord J. McCurle	NWNW08	07N	07E	456 •	85	121CRNL
G062	313541090315301		NWNW08	07N	07E	458	45	121CRNL
G063	313433090312801		SENW17	07N	07E	480	65	121CRNL
G065	31347090312101		SWSE20	07N	07E	492	187	121CRNL
G066	313618090321101		SWNE06	07N	07E	460	50	121CRNL
G067	313433090315701	H. R. Owens	SENE 18	07N	07E	475	150	121 CRNL
G068	313347090312102	Aaron Acord	SWNE 20	07N	07E	492	308	122MOCN
G069	313512090315201	D. Ballard	SWSW08	07N	07E	485	85	121 CRNL
G071	313622090321201	Rayburn Bowman	SWNE 06	07N	07E	440	256	122MOCN

Table 13.--Records of wells in area 3--Continued

Well Number	Station Number	Owner	Loc Sec.	ation	R.	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit *
	TRUINGE	Owner .	3001			(10)		01120
		Lincoln County	(Continued)				
G099	313429090313001	Doug Warren	NESW17	07N	07E	472	48	121CRNL
Q043	312123090205501	Louie Jean Martin	NESE36	05N	08E	380	100	121CRNL
Q044	312320090225201	Clareman Hodges	SENE22	05 N	08E	465	75	121CRNL
Q045	312305090224201	F. Moak	NWSW23	05N	08E	460	98	121 CRNL
Q046	312318090222601	Mr. Tyler	SENW23	05N	08E	450	80	121 CRNL
		Pike Co	unty					
BS01	311746090222265	Lofton Spring	NESW23	04N	08E	315		
B096 B105	311748090221001	J Loftin P Fultz	NWSE23 NESE09	04N 04N	08E 08E	340 382	90 110	122MOCN 122MOCN
B118	311932090235201 311805090224501	J E Busby	NENE22	04N	08E	352	60	122MOCN
B119	311950090233001	D Ard	SWNE 10	04N	08E	400	108	122MOCN
B120	311930090240001	R H Felter Jr	NESE09	04N	08E	370	90	122MOCN
B121	311914090231401	Joe C Brown	SWSE 10	04N	08E	380	425	122MOCN
B123 B124	311929090230801 311751090221101	Lonnie Pittman J.Lofton	NWSE10 NWSE23	04N 04N	08E 08E	390 335	200	121 CRNL 122MOCN
B126	311808090230201	Mrs. A.M. Busby	SWNW22	04N	08E	318	70	122MOCN
B127	312006090214501	B.T. Gutter	NENE11	04N	08E	460	125	121 CRNL
B128	311905090220301	Devone Guy	NWNE14	04N	08E	440	110	121 CRNL
B129 B130	311730090214601 311958090243701	E.H. Rollins Clem Wallace	SESE23 NENW09	04N 04N	08E 08E	330 395	60 100	121 CRNL
D044	311424090291901	Donnis Jefcoats	SWNE 10	03N	07E	<i>)))</i>	111	121 CRNL
D188	311449090324201	J.E. Tate	NWNW07	03N	07E	407	100	121CRNL
_								
D190 D192	311312090294401	James Anding Elwin Hewitt	SWSW15 NWSE07	03N 03N	07E 07E	430 420	100 32	121 CRNL
D192	311415090321301 311442090324201	H.L. Tate	NWSEU7	03N	07E	420 405	32 104	121CRNL

121CRNL-Citronelle Formation 122MOCN-Miocene Series

(Dissolved constituents and hardness in milligrams per liter, except as indicated) Table 14.--Chemical analyses of surface-water sites in area 3

Strontium (Sr)		1		778		1 1	190	Ξ	230	111
Boron (B) (µg/L)		1		10		1 13	요!!	0[>	1015	111
Bromide (Br)		ŀ		0.10		1 1	e	01. >	, <u>, , , , , , , , , , , , , , , , , , </u>	111
chlo- ride (Cl)		24		22		7.1	36 1 5 5.2	4.9	23	6.0 70 13
Sul- fate (SO ₄)		1.0		3.0		4.0	2.0 1.0	1.0	3.0	2.0 8.0 2.0
Sodium (Na)		13		11		4.8	21 10 4.1	3.7	14	4.6 38 8.7
Mag- nesi- um (Mg)		1.9		1.9		1.3	1.7	Ý	1.8	1.0 2.8 1.5
Cal- cium (Ca)	ıty	4.4	ounty	4.7	ounty	3.3	6.1 3 .8 1 .8	1.4	3.7	2.5
Hard- ness as CaCo ₃	Amite County	19	Franklin County	20	Lincoln County	11	240	V	128.0	10 31 14
Temper- ature (Deg°C)	Amj	22.5	Fran	28.0	Lir	26.5	23.5 24.5 25.5	24.5	23.0	24.5 23.0 26.5
Spe- cific con- duct- ance pH (µS/cm)(Units)		6.2		6.5		5.9	6.2 6.2 6.4	5,9	6.1	6.5 4.4 6.7
Spe- cific con- duct- ance (µS/cm)		110		110		Æ 82	165 96 46	37	400 108	58 267 84
Stream- flow (ft ³ /s)		9.30		3.40			1.80 5.40 4.80	2,50	2.60 12.0	69.0 1.80 99.0
Time (Hours)		1130		1330		1050	1310 1525 1600	1700	1745	0950 1520 1300
Date of col-		07/07/82		07/07/82 1330		07/08/82 07/08/82	07/ 08 /82 07/ 08 /82 07/07/82	07/08/82	07/06/82	07/09/82 07/06/82 07/09/82
Site		07376640		07291248		02490250 02490260	02490289 02490290 02490300	M2490350		02490357 024903594 02490370

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 15.--Chemical analyses of ground water in area 3

Stron- tium (Sr) (ug/L)		690 610	11111	11111	1111		11011	
Boron (B) (ug/L)		19191		11111	1111		11511	1111
Bromide (Br)		1.36	11111	11111			7.00.11	1111
Chlo- ride (Cl)		270 260 580 660 80	89 5.8 6.8 8.6	660 50 97 470 8.2	5.3 1.8 3.6		260 2.5 4.4 40 42	88 97 120 120
Sul- fate (SO ₄)		8.0 23	3.0	₁	1111		1.0	1.0
Sodium (Na)		110	22 4.7 9.2	310	1111		120 3.9 18	55 49
Mag nesi- um (Mg)		111 04	7.4	12	1111		9.6	4.3
Cal cium (Ca)	unty	27 295	11.3	8 1 1 1 1	1111	County	30 1.2	9.3
Hard ness as CaCo ₃	Amite County	114	75 6 1 8	274	1111	incoln County	114 4 19	41
Temper- ature (Deg°C)	Ą	19.5	20.0	19.5	1111	اندا	20.0	20.0
pH (Units)		4.8	5.0	8.4			4.8	4.8
Spec- cific con- duct- ance (US/cm)		910 895 1800 2110 300	331 42 36 65 60	2240 205 350 1530 53	3228		860 38 38 160 175	330 355 430 455
Date of col- lec- tion		11/03/81 05/27/82 11/02/81 06/03/82	06/02/82 11/02/81 06/02/82 11/02/81 06/03/82	06/03/82 11/02/81 11/02/81 11/03/81 11/02/81	11/02/81 11/02/81 11/02/81 11/02/81		05/26/82 11/04/81 05/26/82 11/05/81 05/26/82	11/04/81 05/26/82 11/06/81 05/25/82
well depth (ft)		60 1 133 1 133 0 100 1	100 80 80 85 100 85	57 (85 1 100 1 100 1 80 1	80 55 1		81 100 100 100 80 80	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Water bearing unit*		1210RNL 1210RNL 1210RNL 1210RNL 1210RNL	121CRN 121CRN 121CRN 121CRN 121CRN	1210RN 1210RN 1210RN 1210RN 1210RN	1210RN 1210RN 1210RN 1210RN		1210RN 1210RN 1210RN 1210RN 1210RN	121CRN 121CRN 121CRN 121CRN
Well Number		E082 E082 E083 E083 E084	E084 E085 E085 E086 E086	E087 E088 E089 E090 E091	E092 E093 E094 E095		G056 G057 G057 G058 G058	6059 6059 6060 6060

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 15.--Chemical analyses of ground water in area 3--Continued

Stron- tium (Sr) (µg/L)		12121	72200	11111	11111	11		600 18 18
Boron (Β) (μg/L)		13181	190		11111			190 10 1
Bromide (Br)		0.33	5.57	11111	11111			1.82
Chlo- ride (C1)		30 32 260 270 48	42 980 50 66 15	6.5 20 21 2.7 56	74 110 14 3.8 28	3.0		120 400 27 18 24
Sul- fate (SO4)		1.0	2.0 7.0 5.0	3.0	2.0			1.0 22 4.0 5.0
Sodium (Na)		14 170	22.0 490 30	5.0 13	27 36 8.6			47 150 11
Mag nesi- um (Mg)	(par	1.8	2.5 20 0.8	2.6	5.7	1 1		7.5 12 1.3
Cal cium (Ca)	(Continued)	4.8	3.1 100 5.2	2.9	2.4		Sunty	15 33 2.7
Hard ness as CaCo ₃		1 23 1 23 1	18 335 16	7 1 1 23	48	1 1	Pike County	68 133 12
Temper- ature (Deg°C)	Lincoln County	20.0	19.0 19.5 21.0	20.5 20.0	20.0	1 1		23.0 19.5 20.0
pH (Units)		5.1	4.3	16.5	5.6			5.2 5.4 4.7 4.5
Spec- cific con- duct- ance (µS/cm)		133 153 150 800 895 176	170 3290 190 238 85	49 139 107 97 209	261 408 82 63 110	32		355 1340 109 80 89
Date of col- lec- tion		11/06/81 05/25/82 11/06/81 05/25/82 11/04/81	05/25/82 06/01/82 11/05/81 06/02/82 11/04/81	06/02/82 06/01/82 05/26/82 11/05/81 11/04/81	05/25/82 08/04/83 05/26/82 11/04/81 11/04/81	11/04/81 11/04/81		06/03/82 06/03/82 06/04/82 11/04/81 06/03/82
Well depth (ft)		85 45 45 65	65 187 50 50 150	150 308 85 256 48	48 48 100 75	80		181199
Water bearing unit*		121CRNL 121CRNL 121CRNL 121CRNL 121CRNL	12 1CRNL 12 1CRNL 12 1CRNL 12 1CRNL 12 1CRNL	121CRNL 122MOCN 121CRNL 122MOCN 121CRNL	1210RNL 1210RNL 1210RNL 1210RNL	12 ICRN. 12 ICRN.		122MOCN 122MOCN 122MOCN 122MOCN
Well Number		G061 G061 G062 G062 G063	6063 6065 6066 6066 6066	G067 G068 G069 G071 G099	G099 G099 KS01 Q043	Q045 Q046		BS01 B096 B105 B118 B118

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 15.--Chemical analyses of ground water in area 3--Continued

۲= -					1
Stron- tium (Sr) (µg/L)		11111	81111	11111	
Boron (B) (µg/L)		11111	81111	11111	1 1
Bromide (Br)		11111	0.7	11111	
chlo- ride (c1)		4.0 6.7 2.4 3.2 100	2.4 8.7 9.0 4.0	11 1.1 970 4.9 96	6.8
Sul- fate (SO4)		3.0	2.0	3.0	1 1
Sodium (Na)		3.1	45	42	1 1
Mag nesi- um (Mg)	(pa	6.111	5.1111	4.4	1 1
Cal cium (Ca)	(Continued	1.10.111	=	111115	1 1
Hard ness as caco ₃	1. 1	20111	64		
Temper- ature (Deg°C)	Pike County	19.5	21.5	20.5	1 1
ph (units)		11111	8.1111	111118	1 1
Spec- cific con- duct- ance (µS/cm)		22 37 126 114 350	371 160 59 44 32	35 340 340 359	51
Date of col- lec- tion		06/04/82 06/04/82 11/04/81 06/04/82	08/31/82 11/04/81 11/05/81 11/04/81 11/04/81	11/04/81 11/04/81 10/19/66 11/03/81 11/03/81 06/02/82	11/03/81
Well depth (ft)		108 90 425 425	200 70 125 110	90111000	32 104
Water bearing unit*		122MOCN 122MOCN 122MOCN 122MOCN 121CRN	121CRNL 122MOCN 122MOCN 121CRNL 121CRNL	121CRNL 121CRNL 121CRNL 121CRNL 121CRNL	121CRNL
Well Number		8119 8120 8121 8121 8123	8123 8124 8126 8127 8127	B129 B130 D044 D188 D190 D190	D192 D193

121CRNL-Citronelle Formation 122MOCN-Miocene Series

Table 16.--Location and drainage area of surface-water sites in area 4

	Site		Location	tion	Drainage
Lounty	Number	Station Name	Lat Long	Long	Area(m14)
Lamar Lamar	024892685 02489269	Clear Creek nr Baxterville, MS Unnamed Creek nr Baxterville, MS	310547 310414	0893717 0893826	2.99
Marion	024892695	Clear Creek nr Pinebur, MS	310337	310337 0894055	27.0
Pearl River Pearl River Pearl River Pearl River	024 79182 024 791825 024 791828 024 79183	Parker Creek nr Young, MS Unnamed Creek nr Young, MS Dry Creek nr Young, MS Wash Creek nr Young, MS	305822 305821 305749 305744	0892210 0892141 0892108 0892043	3.42 3.42 1.95

Table 17.--Records of wells in area 4

County	Well Number	Station	Owner	Location Sec. T.	tion T. R	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit*
							l	
Forrest	M059	305859089182001	W.C. Entrekin	SWSWOA			350	122MDCN
Forrest	3000	202828089182002	W. L. Entrekin	SW SWC4		15W 2/5	6	IZICKN
Forrest	M061	2029420691/1601	Carl Archer	NW NW CO			2 2	121CKNL
Forrest	M 064	305900089180901	Zellena Entrekin	SE SWO4	015 015 1	13W 240	350	122MOCN
			,					
Forrest	M065	305900089175201	Ottis Lee	SW SEO4	015 1		82	121CRNL
Forrest	990W	305758089192901	P. A. McCardle	NENE18	•		8	121CRNL
Forrest	W068	305910089165601	Wesley Rawls	SESW03	•	13W 295	41	121CRNL
Forrest	MC69	3058560897201001	Upnella Walters	NEW C			3 8	IZICKN
rorrest	Q (2)	505900089184601	K. L. SMith	SW SEUS	•	15W 285	8	IZICKN
Lamar	M085	310224089374701	O. Holston	SESW17	01N 1	16W 270	;	122M0CN
Lamar	980w	310402089382201	V. F. Davis	NESE07	01N 1	16W 240	235	122M0CN
Marion	R028	310342089405401	Douglas C. Alford	NESW11	010	17W 165	130	122MDCN
Marion	R029	310339089393801	Virgis Schrader	NWSE 12		17W 200	148	122M0CN
Pearl River	1200	305935089220801	G. Morritt	CLMN C		14W 248	06	122MOCN
	0026	305934089220901			015		2 2	122MDCN
	0027	305931089220901					97	122MDCN
Pearl River	0028	305902089225401	R. Boe	SW SE03		14W 250	20	122MDCN
Pearl River	0029	305922089220601	J. O. Owens	NESW02		14W 260	55	121CRNL
	6	100000000000000000000000000000000000000				`	S	00,001
	0000	2022/2016/2017	J. HUISLUN				2 8	122MOCIN
	00.52	305906089225801	K. Boe				3	IZZMUCN
	0033	305928089220801	J. Holston		•		S	122MOCN
	0034	305948089215201	Tommy Brown		015		2	121CRNL
	0036	305940089215201	P. Ladner			14W 270	51	12 ICRNL
Pearl River	0037	305945089230901	Rocky McCadala	NENWO3	015	14W 28U	2	IZICHN

121CRNL-Citronelle Formation 122MOCN-Miocene Series

Table 18.--Chemical analses of surface ⊮ater in area 4

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

* Estimated

Table 19.--Chemical analyses of ground water in area 4

(Dissolved constituents and hardness given in milligrams per liter, except as indicated)

	3 40 1-0		9 -	cific			ב ה ה		No.						Strop
Well Number	bearing unit*	Well depth (ft)	l	duct- ance (µS/cm)	pH (Units)	Temper- ature (Deg°C)	ness as CaCo ₃	Cal cium (Ca)	nesi- um (Mg)	Sodíum (Na)	Sul- fate (SO4)	Chlo- ride (Cl)	Bromide (Br)	Boron (B) (µg/L)	tium (Sr) (µg/L)
						Fo	Forrest County	aunty							
M059	122MDCN		10/21/81	,	I	1 0	1 0	1 5	9	1 9	ł	4.8	١	1 9	١٤
M061	121CRNL		10/21/81	•	. !		976	3 1	}	P !		2.0	5:1	3	3 1
M063 M064	121CRNL 122MOCN	320	10/21/81 10/21/81	59 125	1 1	!!	1 1		1 1	1 1	1 1	10 2.2	: :		1 1
M065	121CRNL	83	10/21/81	85	1	!	;	1	1	1	1	1.9	;	1	1
M066	121 CRNL	8	10/21/81	%	;	1	}	1	;	}	!	9.6	1	1	ł
MO68 MO69	1210RNL 1210RN	4 ℃	10/21/81	2 %		1 1				1 1	; ;	2.7	1 1		1 1
M070	12108NL	88	10/21/81	20	1	1	1	1	1	1	1	1.3	1	1	1
							amar County	unty							
MO85 MO85 MO86 MO86	122MDCN 122MDCN 122MDCN 122MDCN	235	10/19/81 06/07/82 10/19/81 06/07/82	1270 1450 99	4.2	20.5	210		21 2.5 2.9	170	0	390 430 22	3.01	1811	610
						Σ	Marion County	ounty							
R028 R029	122MDCN 122MDCN	130	10/19/81	57 17	1 1	11	1 1		1 1		11	11	1 1	11	11
Ì	1		*0 //* /0*	1)	1)	!		•			1

* 121CRNL-Citronelle Formation 122MOCN-Miocene Series

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 19.--Chemical analyses of ground water in area 4--Continued

,				
Stron- tium (Sr) (µg/L)		11111	1600	11111
Boron (Β) (μg/L)		11111	9	11111
Bromide (Br)		11111	5.38	11111
Chlo- ride (Cl)		2.0 3.6 110 150 680	850 98 98 1.8 3.1	350 17 180 3.1 3.8 4.8
Sul- fate (S04)		1.0	11110	2.0
Sodium (Na)		1.8	240	160 9.0 77
Mag nesi- um (Mg)		0.5	73	27 3.0 12
Cal cium (Ca)	County	1.5	95	25 22
Hard ness as CaCoz	Pearl River County	1 8 1 8 1	540	174 21 104
Temper- ature (Deg°C)	Pear	10.5	20.5	21.0 20.5 21.0
pH (Units)		1	3.6	444 6.3.1
Spe- cific con- duct- ance (µS/cm)		32 40 410 445 2160	2500 400 410 21 51	1180 119 619 42 32 48
Date of col- lec- tion		10/20/81 06/08/82 10/20/81 06/08/82 10/20/81	06/08/82 10/21/81 06/08/82 10/21/81 06/08/82	06/08/82 06/08/82 06/08/82 11/21/81 10/21/81
Well depth (ft)		90 90 52 97	97 200 200 55 55	321320
Water Well bearing Number unit*		122MOCN 122MOCN 122MOCN 122MOCN 122MOCN	122MOCN 122MOCN 122MOCN 121CRNL 121CRNL	122MOCN 122MOCN 122MOCN 121CRNL 121CRNL
Well Number		0021 0021 0026 0026 0027	0027 0028 0028 0029	0030 0032 0033 0034 0036 0036

121CRNL-Citronelle Formation 122MOCN-Miocene Series

Table 20.--Location and drainage area of surface-water sites in area 5

		Station Name	Lat	Long	Area(mi/)
Clarke	02477000	Chickasawhay River at Enterprise, MS	321032	0884910	918
Clarke	024771605	Unnamed Creek nr Harmony, MS	320016	0885020	}
Clarke	024773143	Castaffa Creek at Barnett, MS	315834	_	9.17
Clarke	02477330	Shubuta Creek nr Shubuta, MS	315304		75.5
Clarke	02477875	Long Branch at Chancellor, MS	320128	_	1
Clarke	02477910	Hanging Moss creek nr Carmichael, MS	315332	0883104	!
,	1	:			
Jasper	024/34//	Horse Branch or Heldelberg, MS	515216	0890300	1 5
Jasper	02473480	Harlanactan Creek Hr Waldrup, MS	215140	0890510	30.4 4.
Jasper	024/2810	Unnamed Creek nr Bay Springs, MS	515/41	0891551	1
Jasper	U24 /4569	Frairie Creek nr Heidelberg, MS	215202	0890042	1
Jones	02472058	Plant Branch nr Soso, MS	314754	0891644	2.44
Jones	024745735	Old Julie Branch nr Sandersville, MS	314910	0890017	!
Janes	02474574	Reedy Creek at Sandersville, MS	314717	0890248	8.15
Jones	024745785	Terrell Creek nr Sandersville, MS	314837	0885820	2.19
Wayne	024773553	Tampa Creek nr Eucutta, MS	314616	0885157	4.00
Wayne	024773556	Wagon Branch nr Eucutta, MS	314619	0885149	1.65
₩ayne	02477356	Little Eucutta Creek nr Eucutta, MS	314732	0885039	1
₩ayne	02477400	Carson Sand Creek at Hiwannee, MS	314730	0884057	13.8
Wayne	02477450	Hortons Mill Creek nr Waynesboro, MS	314438	0883912	7.43
Wayne	02477453	Limestone Creek nr Waynesboro, MS	314313	0883840	2.34
Wayne	02477480	Silver Creek nr Boyce, MS	314431	0884357	5.08
Wayne	02477489	Sandy Creek nr Waynesboro, MS	314158	0884056	;
Wayne	02477490	Yellow Creek at Waynesboro, MS	314148	0884014	7.7
Wayne	02477500	Chickasawhay River nr Waynesboro, MS	314046	0884100	1650
Wayne	02477955	Cypress Creek nr Gretna, MS	314628	0883246	6.24

Table 21.--Records of wells in area 5

County	Well Number	Station Number	Owner	Loc. Sec.	Location ac. T.	œ.	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit*
	NO11 PO27 PO45 PO54 PO55	320233088410701 315654088513001 315515088501001 315550088500101 315616088502401	T. R. Sykes W. C. Stallings J. Cooley Mrs. N. W. Mason E. McDaniel	SWSE05 NWNW10 SWSE14 SWNE14 SWSW11	02N 01N 01N 01N	16E 14E 14E 14E 14E	255 300 270 263 255	220 190 170 200 90	124SPRT 124CCKF 124CCKF 124CCKF 124CCKF
	P056 S052	315846088485001 315648088340001	A. Dedwiler Herman Rolison	NWNE01	010	14E	285 335	285 270	12400KF 124SPRT
Jasper Jasper Jasper Jasper	K024 K025 K026 P003	320056089100901 315744089124401 320056089110101 315532089011801 315240089020201	T. A. Bishop W. N. Bolton Lexie Pugh R. Waldrup R. B. Thorton	SWNW16 SESW31 SENW16 SENW16 SESE35	020 020 010 010	11E 11E 11E 11E	398 348 400 445 410	40 20 55 495 595	123VKBG 123VKBG 123VKBG 124CCKF 124CCKF
Jasper Jasper Jasper Jasper	P034 P035 R028 T019	315305089021101 315708089030501 314821089164801 315011089031301 315116089045101	Marshall Beard Dan Jones Virgil Aansworth Robert Patrick W. T. Rowell	SENE35 NESE03 SWNW26 SWNE13 NENE10	01N 10N 10N 10N	12E 12E 13W 11W 11W	390 475 350 350 360	63 40 35 25 118	123VKBG 123VKBG 122CTHL 122CTHL 122CTHL
Jasper Jasper Jasper Jasper Jasper	US01 US02 U027 U028 U029 U030	314936088583665 314934088583465 315140089012601 314936088585101 314940088583001	Nixon Spring Carmichael Spring Arthur Pugh G. Young M. Taylor Waneta Allen	NWNW23 NWNW23 NESW05 NWNW23 NENE22 SESW14	100 100 100 100 100 100 100	10W 10W 10W 10W	 410 340 365 370	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	122CTHL 122CTHL 122CTHL 123VKBG

Table 21.--Records of wells in area 5--Continued

County	Well Number	Station Number	Owner	Loc.	Location ac. T.	æ.	Alti- tude (ft)	Well Depth (ft)	Water Bearing Unit*
Jones Jones Jones Jones	A084 A084 A085 A085	314555089182501 314555089182502 314630089153601 314658089193601 314654089175601	George Green Sr. George Green Sr. Bernard Jefcoat Claude Knight	SWNEO9 SENEO9 NESWOI NEWWO5	N N N N N N N N N N N N N N N N N N N	13W 13W 13W	318 318 370 305	£6268	122CTH 122CTH 122CTH 122CTH 122CTH
Janes Janes Janes Janes	A088 C078 C149 C150	314632089192501 314536089072801 314642089063401 314650089072401 314759089015101	L. E. Welch R. L. Caves Damon Smith Martha Smith Sandersville	NWSEO5 SWNWO8 SWNWO4 SENWO5 SESE30	N N N N N N N N N N N N N N N N N N N	13W 113W 111W 110W	295 270 340 305 315	40 148 68 30 184	122CTH 122CTH 122CTH 122CTH 122CTH
Jones Jones Jones Jones	0149 0150 0151 0152 0153	314842088571501 314702088580301 314436088574501 314431088575101 314714088570801	C. McDonald A. M. Black Elvan Hodge Wright Hodge Francis Yarber	NENWZ5 SWSE35 SESE14 SESE14 SESW36	NOT 100 NO 000 100 100 100	10W 10W 10W	330 320 320 312 388	518 125 40 28 60	124006 12207H 12207H 12207H 12207H
Jones	0016 3073	314519091114401 313502089175801	Isabele Pinder W. P. Gandy	SENW27 NESE09	08N 07N	11W 13W	140 310	150 65	122CTH 122CTH
Wayne Wayne Wayne Wayne	8032 8033 8034 0056 0057	314710088500701 314750088460201 314750088460202 314957088440701 315028088391701	Mrs. M. Graham Troy Daniels Troy Daniels R. Davis Mrs. V. Jones	SESW31 NENW35 NENW35 NESW18 NWNW13	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	08W 08W 07W 07W	345 360 360 242 240	175 32 54 320 235	123VKBG 122CTH 122CTH 124COVF 124COVF
Wayne Wayne Wayne Wayne	F091 G135 H011 H016 H046	314623088520401 314330088450801 314613088434601 314524088435201 314627088431301	T. W. Waldron C. L. Brown Jr. Robert L. Graham George Pugh L. Graham	NESWOZ NENWZ5 SWSEO6 NWSEO8 NWSWO5	N N N N N N N N N N N N N N N N N N N	09W 08W 07W 07W	305 280 300 315 355	05 0 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122CTH 122CTH 123VKBG 122CTH 123VKBG

Table 21.--Records of wells in area 5--Continued

County	Well Number	Station Number	Owner	Loc. Sec.	Location Sec. T. R.	ď	tude (ft)	Well Depth (ft)	Water Bearing Unit*
Wayne	H094	314435088442701	Fred West	NWSW18	N60	W.Z	285	53	122CTHL
Wayne	H131	314616088433901	Karry Graham	SWSE06	N60	07W	245	135	123VKBC
Wayne	H192	314503088415801	W. C. Gavin	NENW 16	8 8	07W	215	옸	123VKBC
Wayne	96IH	314626088432301	G. Graham	NESE06	8 8	07W	370	ł	122CTHL
Wayne	2117	314411088341101	Eddie Blackledge	SENE22	N60	M90	315	62	122CTHL
Wayne	K035	314524088300501	Mr. Hudson	SESE08	N60	W50	300	250	123FRHL
Wayne	L055	313830088402101	Mr. Bond	NWSW20	88 88	M60	255	ŀ	122CTH
Wayne	L056	313807088533101	Mr. Busby	NWNW27	88 88	№	245	254	122CTHL
Wayne	P011	314015088314701	W. E. Giles	SESW07	88 88	05W	255	48	122CTHL
Mayne	P049	314046088313701	E. W. Huffman	NENWO7	88 88	05W	250	41	122CTHL
Wayne	P073	314122088312901	John Bishop	NWSEOS	08N	05W	245	001	123VKBC

122CTH_-Catahoula Sandstone 12FFHL-Forest Hill Sand 127WKGB-Vicksburg Group 124CCKF-Cockfield Formation 124SPRT-Sparta Sand

Table 22.--Chemical analyses of surface water in area 5

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Stron- tium (Sr) (µg/L)			11111	11111	1111	1111	88
Boron (B) (ug/L)		11111					191111
Bromide (Br)		1111		1111	1111	1111	0.03
Chlo- ride (Cl)		4.8 3.5 7.5 7.8	10 4.1 6.5 3.8	6.6 5.0 5.9 6.9	3.5 6.5 12 8.6 8.6	6.1 35 3.4 3.4 5.5	3.3 4.7 100 48 3.5 2.2
Sul- fate (SO ₄)		8.8 7.2 8.2 8.2 16	9.6 7.2 10 11 10	8.4 9.8 7.2 9.6	8.2 8.0 12 11	9.8 8.4 15 6.6	6.2 6.0 6.0 5.0 1.2
Sodium (Na)		4.1 2.8 6.2 6.7	5.5 6.2 9.0 9.0	6.5 9.5 9.5 6.6	3.8 6.9 11 8.5 8.5	5.4	4.7 39 18 2.0 2.0
Mag- nesi- um (Mg)		2.3 1.8 2.0 2.7	2. 1. 2. 2. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2.3 1.6 1.1 2.8		2.2 13 1.9 1.3	1.3 1.9 1.9 6.1
Cal- cium (Ca)	inty	3.7 3.3 7.7	7.2 5.2 7.5 5.4 6.8	8.5.5 8.9 9.9	4.9 7.0 9.0 7.6	8.4 20 5.8	5.0 5.7 16 14 6.2 3.3
Hard- ness as CaCo ₃	Clarke County	22 16 23 28 26	28 15 26 19 26	24 18 15 18 30	16 24 30 28 28	30 103 103 35	18 22 61 61 43 18
Temper- ature (Deg°C)	Clar	12.0 10.0 10.0 25.0	18.0 19.4	9.4 8.9 6.1 9.4	23.3 16.0 16.0	26.0 20.0 8.0	15.0 27.5 25.0 25.0 25.0 15.0
Spe- cific con- duct- ance pH (uS/cm)(Units)		6.5 6.2 6.2 6.7	6.0 5.7 5.5 5.9	6.2 5.5 5.9 6.0	6.1 6.3 6.0 6.0	6.5 6.5 6.2	6.0 7.0 5.5 6.5 6.4
Spe- cific con- duct- ance uS/cm)		72 52 87 99 76	83 55 92 82 118	91 63 55 67 95	76 87 122 107	115 75 105 84	39 74 390 205 43 42
Stream- flow (ft3/s) (546 1250 115 270 246	213 1210 146 298 135	168 260 372 238 230	1610 421 108 71.6	162 946 246 4160	19100 385 .06 5.3 9.5 19
Time (Hours)		0835 1020 1800 1115	1530		1050	0910 1515 1400 1200 1200	1500 1400 1245 1245
Date of col- lec- tion		11/24/59 03/22/60 06/28/60 01/23/64 05/26/64	10/13/64 03/08/65 06/21/65 08/24/65 10/18/66	11/30/66 01/04/67 02/09/67 03/03/67 04/12/67	05/03/67 06/01/67 08/21/67 10/25/67	06/11/69 08/26/70 11/15/71 10/31/74 01/16/75	04/16/75 08/20/82 08/12/82 08/11/82 10/18/66
Site Number		02477000 02477000 02477000 02477000	02477000 02477000 02477000 02477000	02477000 02477000 02477000 02477000	02477000 02477000 02477000 02477000	02477000 02477000 02477000 02477000	02477000 02477000 024771605 024773143 02477330

Table 22.--Chemical analyses of surface water in area 5--Continued

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Stron- tium (Sr) (µg/L)		1111	1	1 1	1 1	į	3600		4100	
Boron (Β) (μg/L)		1111	ŀ	1 1	1 1	;	1 640		001	
Bromide (Br)		1111		1 1		1	4.70		3.62	
Chlo- ride (Cl)		7.5.7.	2.9	2.8	3.0	2.4	8.9 480 13		. 09/	
Sul- fate (SO ₄)		7.6 7.8 6.2 1.6	4.0	1.8 0.4	1.4	: 1	3.0 8.0 4.0		91111	
Sodium (Na)		2.5	2.0	2.5	2.0	2 !	3.9 200 6.7		320	
Mag- nesí- um (Mg)	(pa	0.8	6.	. 5.	∞, α	: ;	1.0 14 1.2		211111	
Cal- cium (Ca)	Continu	7.5 7.5 8.6 8.9	7.0	9.9	5.5	; ;	9.7 99 18	ınty	7	
Hard- ness as CaCo ₃	unty ((2222	21	22	17	;	28 309 50	Jasper County	244	
Temper- ature (Deg°C)	Clarke County (Continued	8.9 6.1 11.7	1	25.0	15.0	; ;	26.5 31.5 27.5	Jas	24.0 22.0 27.0 19.0 16.1	•
Spe- cific con- duct- ance pH (µS/cm)(Units)		61 6.7 59 6.0 65 6.5 64 6.2		62 6.8 57 6.4			85 7.2 1750 6.1 142 6.1		2290 4.9 1750 1100 400 3000	
Stream- flow (ft3/s) (9.0 53 12 8.0	3/	41 7.0	6.8 8.8	}	32 .28 5.2		.78 45.2 90.4 30.3 10.2 12.0	, , , ,
Time (Hours)					UBU	1010	1145 1530 1730		1515 1315 1640 1400 1730 1600	
of col- lec- tion		01/04/67 02/09/67 03/03/67 04/12/67	/9/sn/sn	06/01/67 08/21/67	10/25/67	11/18/11	08/20/82 08/11/82 08/11/82		07/2 6/ 82 05/11/65 08/23/65 10/07/65 11/08/65	/ /++
Site Number		02477330 02477330 02477330 02477330	024//330	02 4 77330 02 4 77330	02477330	02477330	02477330 02477875 02477910		02473477 02473480 02473480 02473480 02473480 02473480	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(Dissolved constituents and hardness in milligrams per liter, except as indicated) Table 22.--Chemical analyses of surface water in area 5--Continued

Stron- tium (Sr) (µg/L)		11111	11111	11111	11111
Boron (B) (µg/L)		11111	11111	11111	11111
Bromide (Br)		11111	11111	11111	11111
Chlo- ride (C1)		11111	11111	11111	14111
Sul- fate (SO ₄)		11111	11111	1111	
Sodium (Na)		11111	11111	11111	
Mag- nesi- um (Mg)	Jasper County (Continued	11111	11111	11111	11111
Cal- cium (Ca)	nty (Co				11111
Hard- ness as CaCo ₃	per Cou	111;1		11111	
Spe- cific con- duct- ance pH ature (µS/cm)(Units) (Deg°C) (Jas	13.0 72.0 17.0 22.0 25.0	26.0 21.0 8.0 8.0 9.0	21.0 21.0 21.0 22.0 10.0	12.0 4.0 7.0 21.0 24.0
pH (Units			11111	1111	11111
Spe- cific con- duct- ance (µS/cm)		700 800 500 40 1300	1400 1850 1500 800 700	1600 1600 1900 1550 4300	3000 390 900 270 3000
Stream- flow (ft3/s)		16.0 25.0 53.8 42.8 37.0	13.2 11.0 33.0 15.2 18.6	36.8 36.8 97.8 7.40	1.40 74.0 17.0 185
Time (Hours)		1545 1220 1525 1730 1700	1630 1610 1555 0850 1215	1325 1215	
Date of col- lec- tion (12/13/65 01/18/66 04/19/66 05/23/66 07/05/66	08/15/66 09/27/66 12/01/66 01/18/67 03/02/67	04/12/67 04/12/67 06/01/67 08/29/67 10/12/67	11/14/67 01/05/68 02/21/68 05/13/68 07/02/68
Site		02473480 02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480 02473480

Table 22.--Chemical analyses of surface water in area 5--Continued

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Strontium (Sr) (µg/L)			11111	11111	
Boron (B) (µg/L)		1111	1111	1111	11111
Bromide (Br)			1111	11111	11111
Chlo- ride (Cl)			11111	11111	11111
Sul- fate (SO ₄)			11111	11111	11111
Sodium (Na)			11111	11111	
Mag- nesi- um (Mg)	Jasper County (Continued		11111	11111	11111
Cal- clum (Ca)	nty (C		11111	1111	11111
Hard- ness as CaCo3	oer Cou		11111	11111	11111
Temper- ature (Deg°C)	Jasi	23.0 14.0 9.0 5.0	11.0 18.0 21.0 31.0	16.0 11.0 7.0 4.0	11.0 10.0 10.2 13.0 18.0
Spe- cific con- duct- ance pH ature (µS/cm)(Units) (Deg°C) C				0 0 0 7.1	
Spe- cific con- duct- ance (µS/cm	750	3300 3000 750 1200	800 210 2000 1100 3500	3000 3000 2800 3000 420	1100 520 520 520 620 900
Stream- flow (ft ³ /s)	25 0	0.14 0.21 28.0 14.0	21.0 32.0 6.00 1.40 0.21	0.27 0.45 0.36 36.0 40.0	12.0 57.0 57.0 30.0 21.0
Time (Hours)				1200 1540	1200
Date of col- lec- tion (08/12/68	10/03/68 10/24/68 12/30/68 01/14/69	02/27/69 04/09/69 05/28/69 06/24/69	10/15/69 11/12/69 12/04/69 12/04/69 01/06/70	01/29/70 07/17/20 02/18/70 03/09/70 07/18/50
Site Number	03473480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480 02473480

Table 22.--Chemical analyses of surface water in area 5--Continued

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Stron- tium (Sr) (ug/L)		111	1 1		1 1	1111		470
Boron (B) (ug/L)		111	1 1	; ; ;		11111	1 1 1	1 1 2 1 2
Bromide (Br)		111			1 1		11111	 0.51 .86
Chlo- ride (Cl)		1			1.1	11111		 87.0 61 160
Sul- m fate (SO4)		111	1 1	1 1	1 1	11111	11111	5.0 15 14 1
Sodium (Na)	(pa	111	1 1		1 1	11111	11111	74
Mag- nesi- um (Mg)	Jasper County (Continued	1 1 1	1 1			11111		22.7
Cal- cium (Ca)	unty				1 1	11111		 24.0 27 60
Hard- ness as CaCo3	oer Co		1 1	1 1	1 1		11111	1 72 72 88 68 68
Temper- ature (Deg°C)	Jast	18.0 19.0 23.0	23.0	26.0 31.0 26.0	15.1	5.5 14.1 17.0 2.6 25.0	24.0 12.0 18.0 23.0 10.0	15.5 18.7 25.0 25.5 25.5
Spe- cific con- duct- ance pH (uS/cm)(Units)		6.7	4.9	6.2	6.9	6.4 6.7 7.0 7.0 6.4	6.5 7.0 7.1 7.1	6.3 5.8 6.5 7.2
		875 450 1350	1350	2200 3500 875	3400 700	345 350 50 800 700	440 500 420 800 800	290 860 392 310 750
Stream- flow (ft3/s)		21.0 94.0 4.20	4.20 8.60	4.00 4.00	0.60	50.0 60.0 25.0 7.50 13.0	.75	59.2 630 12.0 .6 5.0
Time (Hours)		1425	1530	1830	1645 0940	1300 1025 0840 1100 1000	1220 1000 1830 1530 1645	1200 1045 0930 0925 1715
Date of col- lec- tion (A		03/31/70 04/20/70 05/11/70	05/11/70 06/01/70	06/04/70 06/22/70 08/10/70	07/22/00 07/22/21	02/09/71 03/23/71 05/04/71 06/15/71 08/04/71	09/21/71 01/28/72 03/15/72 10/18/72 11/30/11	03/05/73 04/26/73 08/11/82 07/27/82
Site Number		02 473 480 02 473 480 02 473 480	02 473 480 02 473 480	02 473 480 02 473 480 02 473 480	02 473 480 02 473 480	02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473480 02473480	02473480 02473480 02473480 02473810 02474569

Table 22.--Chemical analyses of surface water in area 5--Continued

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Stron- tium (Sr) (µg/L)	180		1400	069 	1300	91111
Boron (B) (ug/L)					-	0.1.1.1
l i	20 1 1 20		280 280 140	160	180	11118
Bromide (Br)	0.11 0.90 1.65		2.55	1 1 1 8: 1	1.40	
Chlo- ride (Cl)	27 150 35 160		110 200 750 4200,	14 303 930 110 38	167 210 210 7.6 5.0	3.1 359 278 61 152
Sul- fate (S04)	3.0 25 4.0 4.0		2.0 2 2.0 2 7 3.0 3	14 3 4.0 1 8.0	1.0 2	1.0
Sodium (Na)	12 140 19 52		55 89 140	8.4]	1 1 20 1 1	2.1
Mag- nesi- um (Mg)	1.7 3.1 5.4		2.3 4.9 5.9 1	2.3	1 1 1	0.6
Cal- cium (Ca)	inty 5.0 11 7.5	ity	9.5 29 31	28 44 30	92	2.2
Hard- ness as CaCo3	Jones County .0 0 5.0 .0 40 11 .5 27 7.5	Wayne County	۲3 13 در در	81128	118211	8 5 1 1 1 1
Temper- ature (Deg°C)	Jone 22.0 25.0 25.5 28.0	Wayr	25.0 25.0 13.5 26.5 28.5	24.0 15.0 21.5 23.5 24.5	14.5 23.0 23.0 12.0 24.0	25.5 12.0 25.5
pH (Units)	6.4 7.3 5.5 5.8		5.5 5.1 5.5	6.8 8.2 7.3 7.0	~	5.9 6.5 6.3
Spe- cific con- duct- ance pH (uS/cm)(Units)	117 717 184 555		395 717 1350 7000 1050	205 1060 2500 510 275	540 700 735 <50 <50	32 1190 60 260
Stream- flow (ft3/s)	0.96 0.46 0.94 0.67		1.2 0.76	9.5 1.9 1.9	01 1	6.2
Time (Hours)	1230 1145 1030 1420		1230 1030 1615	0815 1115 1400	0830	0830 1200 1445
Date of col-	07/26/82 07/27/82 08/10/82 07/27/82		08/13/82 08/13/82 04/05/73 08/13/73	08/18/82 04/03/73 08/14/73 08/17/82 08/17/82	03/27/73 08/14/73 08/17/82 03/01/73 08/14/73	08/13/82 12/22/65 11/15/71 04/11/73 08/13/73
Site Number	02472058 024745735 02474574 024745785		024773553 024773556 02477356 02477356 02477356	02477400 02477450 02477450 02477450	02477480 02477480 02477480 02477489 02477489	02477489 02477490 02477490 02477490 02477490

Table 22.--Chemical analyses of surface water in area 5--Continued

(Dissolved constituents and hardness in milligrams per liter, except as indicated)

Stron- tium (Sr) (µg/L)		92	1 1	1	ŧ	1 1	1	i	1	{	!	1	1	;	1	;	1	;	1	;	;	į	1	ļ	ŀ
Boron (B) (µg/L)		160		1	1	! ;	;	1	1	:	!	;	:	;	1	;	1	1	1	1	;	!	1		;
Bromide (Br)		0.48	1 1	;	ŀ	: :	1	i	1	:	!	:	ŀ	;	•	1	{	1	;	!	;	1			!
Chlo- ride (Cl)		87 108	135	137	134	251 87	133	119	156	280 ::6	110	28	125	111	옸	[47	[47	75	38	22	75	86	986	50.	/7
Sul- um fate (SO ₄)		3.0			9:					1:				16					11			1	•	`	
i- Sodium (Na)		42 52	2,5	69	71	1 94	7.7	55	92	1 :	ςς	;	62	82	25	;	1	37	20	33	42	!	ļ	\	<u> </u>
Mag- l- nesi- um um a) (Mg)	inued)	2.4	6.0	7.9	3.9	4.4	6.4	5.5	6.1	1	4.1	ľ	4.6	5.4	3.2	1	1	3.1	3.2	4.1	3.2		.	,	(*)
Hard- ness Cal- as cium CaCo ₃ (Ca)	ty (Cont	45 14 88 28			86 28					; ;				82 24				65 2]	12						
Temper- n ature (Deg°C) C	Wayne County (Continued	24.0			23.0														22.0 7						
Spe- cific con- duct- ance pH (µS/cm)(Units)	*	6.9	7.0	6.9	6.1	7.0	7.5	9.9	7.0	; ;	6.4	!	6.4	7.6	6.8	;	1	6.5	7.2	6.9	7.6				
		346 521	553 580	563	555	397	528	479	290	936	415	/54	486	448	245	747	7,7	336	193	310	317	682	683	1,44	‡
Stream- flow (ft ³ /s)		66 I	1 1	1	;	; ;	1	1	ŀ	ł	;	i	1	!	;	1	ŀ	ł	1	;	{	ļ	ļ	!	i
Time (Hours)		0915								0700							0200						0700	3	
Date of col-		08/20/82 10/01/63	10/11/63	11/01/63	11/11/63	11/25/63	11/29/63	12/02/63	12/10/63	12/14/63	12/15/65	12/24/65	12/25/63	01/01/64	01/11/64	01/11/64	01/17/64	01/18/64	01/26/64	02/01/64	02/11/64	10/14/64	00/14/64	07/2/20	17/ 04
Site		02 47 7490 02 47 7500	02477500	02477500	02477500	02477500	02477500	02477500	02477500	02477500	024//500	024/1200	02477500	02477500	02477500	02477500	02477500	02477500	02477500	02477500	02477500	02477500	00477500	00477500	0071120

(Dissolved constituents and hardness in milligrams per liter, except as indicated) Table 22.--Chemical analyses of surface water in area 5--Continued

Stron- tium (Sr) (µg/L)		1	11111	11111	11111	11111	11111	11111	120
Boron (B) (µg/L)		1	11111	11111	11111	11111	11111	1111	1 09 1
Bromide (Br)		1		111111	11111		11111	11111	
Chlo- ride (Cl)		8.7	29 47 59 67 108	84 120 184 128 110	64 91 133 154	100 155 217 83 90	101 107 40 115 95	50 182 2600 39 15	8.7 5.8 9.0 16
Sul- fate (SO4)		2.4	7.0 8.2 7.4 8.6 7.8	8.2 8.2 9.6 7.2	7.2 7.2 7.2 8.6	13 9.0 8.6 8.6	7.4 9.4 7.4 9.8	1 2 2 6.9 6.9	6.0 7.0 6.0 12
Sodium (Na)		5.1	23852	25 55 85 84 58 52 55 85 84 58 52 55 85 85 85 85 85 85 85 85 85 85 85 85	55 54 1 66 1	52 77 97 42	52 53 54 55	11111	8.7 4.9 8.7
Mag- nesi- um (Mg)	(pg	2.1	3.5 3.5 3.5	27.74 2.74 2.04 4.04	1.6	2.6 4.8 4.6 1.6	3.22	1.9	1.3 1.8 1.5 2.0
Cal- cium (Ca)	ontinue	4.1	12 16 17 17 23	23 28 34 30 23	17 17 20 28	20 29 44 	24 27 14 26 24	 114 9.5	8.3 10 11 39
Hard- ness as CaCo3	unty (C	19	22822	69 85 104 74 78	64 64 64 64 64 64 64 64 64 64 64 64 64 6	4850 I	88384	11128	33 28
Temper- ature (Deg°C)	Mayne County (Continued)	25.0	25.0 25.0 25.0		11118	 28.0	11111	 12.0 28.0 17.0 10.0	15.0 27.0 24.5 25.0
Spe- cific con- duct- ance pH ature (µS/cm)(Units) (Deg°C)		68 7.1	162 7.2 229 7.1 270 7.1 307 7.2 444 7.0	355 6.9 492 7.2 674 7.0 528 7.3 454 6.8 469 7.0	285 7.0 285 7.0 379 6.9 508 7.2 577	412 6.8 571 7.0 773 7.2 341 7.0 363	410 7.4 438 7.1 214 7.2 461 7.2 401 6.5	260 5.5 4800 5.5 165 6.6 95 6.4	50 6.1 121 7.1 100 5.9 276 6.7 3. E., 1974
Stream- flow (ft3/s)		1	11111	11111	11111	11111	11111	 448 4450	4480 1050 .31 5.3 McCarty,
Time (Hours)					0700	0700		1520 1700 1145	1115 4 0815 1 0945 0815
Date of col- lec- tion (05/01/64	05/05/64 05/08/64 05/13/64 05/23/64 05/30/64	06/04/64 06/12/64 06/15/64 06/20/64 06/25/64 07/01/64	07/03/64 07/11/64 07/15/64 07/23/64 07/25/64	07/27/64 08/08/64 08/14/64 08/20/64 08/23/64	09/01/64 09/11/64 09/19/64 09/24/64 10/21/64	11/15/71 04/11/73 08/13/73 10/23/74 01/22/10	04/02/75 08/20/82 08/12/82 08/12/82
Site		02477500	02477500 02477500 02477500 02477500 02477500	02477500 02477500 02477500 02477500 02477500	02477500 02477500 02477500 02477500 02477500	02477500 02477500 02477500 02477500 02477500	02477500 02477500 02477500 02477500 02477500	02477500 * 02477500 * 02477500 02477500 02477500	02477500 04/02/75 02477500 08/20/82 02477955 08/12/82 02477965 08/12/82 * From Baughman, W.

Table 23.--Chemical analyses of ground water in area 5

(Dissolved constituents and hardness given in milligrams per liter, except as indicated)

Sodium fate ride Bromide (B) (Sr) (Na) (SO4) (C1) (Br) (µg/L) (µg/L) 1 50 61 15	8.80 180 7600 49 2000 45000
Sul- Chlo- fate ride Bromide (S04) (C1) (Br) (Br) (61) 15 64 15 64 16 65 15 64 16 72 20 64 16 65 15 65 6 73 54 66 6 66 6 74 6.6 66 6 66 6 75 20 77 20 87 20 86 6 86 6 87 20 86 6 86 6 86 6 87 20 86 6 86 6 86 6 86 6 87 20 86 6 86 6 86 6 86 6 86 6 87 20 86 6 86 6 86 6 86 6 86 6 86 6 86 6 86 6 87 20 86 6 86 6 86 6 86 6 86 6 87 20 86 6 86	
Sul- Chlo- fate ride (S04) (C1) (S04) (C1) (C1) (S04) (C1) (S1) (S1) (S1) (S1) (S1) (S2) (S2) (S3) (S3) (S4) (S4) (S4) (S4) (S4) (S5) (S6) (S6) (S7) (S7) (S7) (S7) (S7) (S7) (S7) (S7	 49
Sultrate (S04) (S0	ω
	.0 1000 6300 24.0 27.0 3.6
Sodium (Na) (Na) 1 50 1 20 1 20 1 20 1 20 1 20 1 20 1 20	16 21 21 3.0 6.0
	2400 2400 14 3.6
8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	4 40 3.1 1.2
Cal Cium (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca)	200 1200 5.5
Hard ness Cal as Cium CaCo ₃ (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca)	607 3625 26 122
Temper-ature (Deg°C) (23.5 34.5 23.0 23.0
(Units)	1.48
Spec- ciffic con- duct- ance (µS/cm) 700 700 700 700 700 700 700 700 700 70	67 3160 18000 134 133 274
Date of col- lec- tion tion/7/81 06/10/82 06/10/82 10/07/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81 10/13/81	10/15/81 08/10/82 08/10/82 10/15/81 06/09/82
Well depth (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	118 24 24 21
Water bearing unit* Unit* 1245PRT 1240CKF 12530KBG 1230KBG 1230KBG 1230KBG 1230KBG 1230KBG 1230KBG 1230KBG 1230KBG 1230CKF 1240CKF 1240CKF 1240CKF 1240CKF 1230KBG 1230KBG 1230KBG 1230CKF 1250CKF 125	122CTH. 122CTH. 122CTH. 122CTH.
Multher Number Number P027 P027 P027 P035 P035 P035 P035 P035 P033 P033 P033	1020 US01 US02 U027 U027

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 23.--Chemical analyses of ground water in area 5--Continued

Stron- tium (Sr) (µg/L)			11111	11111	1.111	111		111
Boron (Β) (μg/L)		1 1		1111	1.111	111		
Bromide (Br)		} }	11111	11111	1:111			111
Chlo- ride (Cl)		31 6.6	6.4 2.7 9.1 2.6 2.9	16 31 1.3 4.6 3.2	28 27 2.2 1.1 15.	8.3 7.0 4.4		2.1 2.1 2.2
Sul- fate (SO4)		11	11111	11111	1 1 1 1	111		1 1 1
Sodium (Na)		11	11111	11111	240	111		111
Mag nesi- um (Mg)	(Continued)	11	11111	11111	0.8	111		111
Cal cium (Ca)	1.3	1 1		11111	2:1	111	ounty	111
Hard ness as CaCo ₃	Jasper County		11111	11111	·	1 1	Mayne County	111
Temper- ature (Deg°C)	Jasp	20.0		11111	23.0	111		1 1 1
pH (Units)		6.4	11111	11111	8.7	111		111
Spec- cific con- duct- ance (µS/cm)		230 208	46 25 26 78	158 205 22 148 138	860 853 90 41 175	63 640 88		280 380 16
Date of col- lec- tion		08/10/82 10/14/81	10/09/81 10/09/81 10/08/81 10/09/81 09/21/81	10/09/81 10/08/81 10/08/81 10/08/81 10/14/81	10 /14/81 06/09/82 10/14/81 10/14/81 10/14/81	10/14/81 09/23/81 10/09/81		09/24/81 09/24/81 09/23/81
Well depth (ft)		40 80	86228 86228	40 148 68 30 184	518 518 125 40 28	60 150 65		150 175 32
Water bearing unit*		122CTHL 123VKBG	1220TL 1220TL 1220TL 1220TL 1220TL 1220TL	1220TH 1220TH 1220TH 1220TH 1220TH	12400KF 12400KF 1220THL 1220THL 1220THL	122CTH. 122CTH. 122CTH.		123VKBG 123VKBG 122CTHL
Well Number		U029 U030	A083 A084 A085 A086	A088 C078 C149 C150	0149 0149 0150 0151 0152	0153 6016 3073		A028 B032 B033

(Dissolved constituents and hardness given in milligrams per liter, except as indicated) Table 23.--Chemical analyses of ground water in area 5--Continued

Stron- tium (Sr) (µg/L)			1 1 1			1 1
St Boron 1 (B) (1 (µg/L) (1			1 1	220	10000	
Bo Bromide ((Br) (µ				07	1 1 1	11
Chlo- ride Bro			6.1	0.8 180 1.07 6.0	14 12.8 1.9 3.6 1.0	2.9
		\$	6.7 6.7 29 29 16	220 180 6 6		7
Sul- um fate) (SO4)					2500	
l- Sodium (Na)			0 2.0	11711	1 ⁶	11
Mag nesi- m um	ntinued		.5 5.0 .3 13	9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	009	11
rd ss Cal s cium co ₃ (Ca)	favne County (Continued)		0 1.5		R	11
Hard er- ness re as	avne Cou		11 2.0	62 10 	18	11
Temper- ature () (Deg°C)	Ž		. 20.0 . 19.5	20.5	22.0 - 3	11
pH (Units)		11111	4.9	7.1	18.111	1 1
Spec- cific con- duct- ance (µS/cm)		52 770 980 1000 415	57 60 120 122 310	34 870 950 32 136	380 7800 20 385 95	28 34
Date of col- lec- tion		09/23/81 09/23/81 09/22/81 06/10/82 09/24/81	09/24/81 06/10/82 09/24/81 06/10/82 09/23/81	09/23/81 09/23/81 06/10/82 09/23/81 09/23/81	09/23/81 06/10/82 09/22/81 09/22/81 09/24/81	09/24/81 09/22/81
Well depth (ft)		235 C 235 C 244 C	88994	88 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 1 28 S 1	254 0
Water bearing unit*		122CTH 124CCKF 124CCKF 124CCKF 123VKBG	12207H 12207H 12207H 12207H 12307H 1230KBG	122CTHL 123WBG 123WBG 122CTHL 123WBG	123VKBG 122CTH. 122CTH. 123FRH. 123FRH.	122CTH. 122CTH.
Well t		8034 C056 C057 C057 F090	F091 F091 G135 G135 H011 F011 F0	H016 H046 H046 H094 H131	H192 1 H196 1 J117 1 K035 1 L055 1	L056 J P011 J

122CTML-Catahoula Formation 123FML-Forest Hill Sand 123VMGG-Vicksburg Group 124CDMF-Cockfield Formation 124SFMT-Sparta Sand